在Pytorch中使用样本权重(sample_weight)的正确方法

yipeiwu_com6年前Python基础

step:

1.将标签转换为one-hot形式。

2.将每一个one-hot标签中的1改为预设样本权重的值

即可在Pytorch中使用样本权重。

eg:

对于单个样本:loss = - Q * log(P),如下:

P = [0.1,0.2,0.4,0.3]
Q = [0,0,1,0]
loss = -Q * np.log(P)

增加样本权重则为loss = - Q * log(P) *sample_weight

P = [0.1,0.2,0.4,0.3]
Q = [0,0,sample_weight,0]
loss_samle_weight = -Q * np.log(P)

在pytorch中示例程序

train_data = np.load(open('train_data.npy','rb'))
train_labels = []
for i in range(8):
  train_labels += [i] *100
train_labels = np.array(train_labels)
train_labels = to_categorical(train_labels).astype("float32")
sample_1 = [random.random() for i in range(len(train_data))]
for i in range(len(train_data)):
  floor = i / 100
  train_labels[i][floor] = sample_1[i]
train_data = torch.from_numpy(train_data) 
train_labels = torch.from_numpy(train_labels) 
dataset = dataf.TensorDataset(train_data,train_labels) 
trainloader = dataf.DataLoader(dataset, batch_size=batch_size, shuffle=True)

对应one-target的多分类交叉熵损失函数如下:

def my_loss(outputs, targets):
  
  output2 = outputs - torch.max(outputs, 1, True)[0]
 
 
  P = torch.exp(output2) / torch.sum(torch.exp(output2), 1,True) + 1e-10
 
 
  loss = -torch.mean(targets * torch.log(P))
 
 
  return loss

以上这篇在Pytorch中使用样本权重(sample_weight)的正确方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实现生成随机数据插入mysql数据库的方法

Python实现生成随机数据插入mysql数据库的方法

本文实例讲述了Python实现生成随机数据插入mysql数据库的方法。分享给大家供大家参考,具体如下: 运行结果: 实现代码: import random as r import...

python实现差分隐私Laplace机制详解

python实现差分隐私Laplace机制详解

Laplace分布定义: 下面先给出Laplace分布实现代码: import matplotlib.pyplot as plt import numpy as np def...

简单谈谈python基本数据类型

int(整型) 在32位机器上,整数的位数为32位,取值范围为-2**31~2**31-1,即-2147483648~2147483647 在64位系统上,整数的位数为64位,取值范围为...

Python实现批量检测HTTP服务的状态

Python实现批量检测HTTP服务的状态

用Python实现批量测试一组url的可用性(可以包括HTTP状态、响应时间等)并统计出现不可用情况的次数和频率等。 类似的,这样的脚本可以判断某个服务的可用性,以及在众多的服务提供者中...

python批量将excel内容进行翻译写入功能

由于小编初来乍到,有很多地方不是很到位,还请见谅,但是很实用的哦! 1.首先是需要进行文件的读写操作,需要获取文件路径,方式使用os.listdir(路径)进行批量查找文件。 fil...