在Pytorch中使用样本权重(sample_weight)的正确方法

yipeiwu_com5年前Python基础

step:

1.将标签转换为one-hot形式。

2.将每一个one-hot标签中的1改为预设样本权重的值

即可在Pytorch中使用样本权重。

eg:

对于单个样本:loss = - Q * log(P),如下:

P = [0.1,0.2,0.4,0.3]
Q = [0,0,1,0]
loss = -Q * np.log(P)

增加样本权重则为loss = - Q * log(P) *sample_weight

P = [0.1,0.2,0.4,0.3]
Q = [0,0,sample_weight,0]
loss_samle_weight = -Q * np.log(P)

在pytorch中示例程序

train_data = np.load(open('train_data.npy','rb'))
train_labels = []
for i in range(8):
  train_labels += [i] *100
train_labels = np.array(train_labels)
train_labels = to_categorical(train_labels).astype("float32")
sample_1 = [random.random() for i in range(len(train_data))]
for i in range(len(train_data)):
  floor = i / 100
  train_labels[i][floor] = sample_1[i]
train_data = torch.from_numpy(train_data) 
train_labels = torch.from_numpy(train_labels) 
dataset = dataf.TensorDataset(train_data,train_labels) 
trainloader = dataf.DataLoader(dataset, batch_size=batch_size, shuffle=True)

对应one-target的多分类交叉熵损失函数如下:

def my_loss(outputs, targets):
  
  output2 = outputs - torch.max(outputs, 1, True)[0]
 
 
  P = torch.exp(output2) / torch.sum(torch.exp(output2), 1,True) + 1e-10
 
 
  loss = -torch.mean(targets * torch.log(P))
 
 
  return loss

以上这篇在Pytorch中使用样本权重(sample_weight)的正确方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

urllib2自定义opener详解

urllib2.urlopen()函数不支持验证、cookie或者其它HTTP高级功能。要支持这些功能,必须使用build_opener()函数创建自定义Opener对象。 复制代码 代...

基于python监控程序是否关闭

这篇文章主要介绍了基于python监控程序是否关闭,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 监控一个服务系exe在他关闭后打印,...

Python Scapy随心所欲研究TCP协议栈

1. 前言 如果只需要研究Linux的tcp协议栈行为,只需要使用packetdrill就能够满足我的所有需求。packetdrill才是让我随心所欲地撩tcp协议栈。packetdri...

简单谈谈Python中函数的可变参数

前言 在Python中定义函数,可以用必选参数、默认参数、可变参数和关键字参数,这4种参数都可以一起使用,或者只用其中某些,但是请注意,参数定义的顺序必须是:必选参数、默认参数、可变参...

python字符串替换re.sub()方法解析

pattern可以是一个字符串也可以是一个正则,用于匹配要替换的字符,如果不写,字符串不做修改。\1 代表第一个分组 repl是将会被替换的值,repl可以是字符串也可以是一个方法。如果...