在Pytorch中使用样本权重(sample_weight)的正确方法

yipeiwu_com6年前Python基础

step:

1.将标签转换为one-hot形式。

2.将每一个one-hot标签中的1改为预设样本权重的值

即可在Pytorch中使用样本权重。

eg:

对于单个样本:loss = - Q * log(P),如下:

P = [0.1,0.2,0.4,0.3]
Q = [0,0,1,0]
loss = -Q * np.log(P)

增加样本权重则为loss = - Q * log(P) *sample_weight

P = [0.1,0.2,0.4,0.3]
Q = [0,0,sample_weight,0]
loss_samle_weight = -Q * np.log(P)

在pytorch中示例程序

train_data = np.load(open('train_data.npy','rb'))
train_labels = []
for i in range(8):
  train_labels += [i] *100
train_labels = np.array(train_labels)
train_labels = to_categorical(train_labels).astype("float32")
sample_1 = [random.random() for i in range(len(train_data))]
for i in range(len(train_data)):
  floor = i / 100
  train_labels[i][floor] = sample_1[i]
train_data = torch.from_numpy(train_data) 
train_labels = torch.from_numpy(train_labels) 
dataset = dataf.TensorDataset(train_data,train_labels) 
trainloader = dataf.DataLoader(dataset, batch_size=batch_size, shuffle=True)

对应one-target的多分类交叉熵损失函数如下:

def my_loss(outputs, targets):
  
  output2 = outputs - torch.max(outputs, 1, True)[0]
 
 
  P = torch.exp(output2) / torch.sum(torch.exp(output2), 1,True) + 1e-10
 
 
  loss = -torch.mean(targets * torch.log(P))
 
 
  return loss

以上这篇在Pytorch中使用样本权重(sample_weight)的正确方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

详解python中的 is 操作符

大家可以与Java中的 == 操作符相互印证一下,加深一下对引用和对象的理解。原问题: Python为什么直接运行和在命令行运行同样语句但结果却不同,他们的缓存机制不同吗? 其实...

妙用itchat! python实现久坐提醒功能

本文实例为大家分享了python久坐提醒的具体实现代码,供大家参考,具体内容如下 #!/usr/bin/envy python3 #-*- coding:utf-8 -*- impo...

python3将视频流保存为本地视频文件

python3将视频流保存为本地视频文件

使用python3+opencv3.3.1环境将视频流保存为本地视频文件,具体内容如下 1、利用opencv中的VideoCapture类获取视频流的链接,通过cv2的方法得到该视频流的...

python中的TCP(传输控制协议)用法实例分析

本文实例讲述了python中的TCP(传输控制协议)用法。分享给大家供大家参考,具体如下: 1.TCP与UDP的不同: windows网络调试助手下载:https://pan.baidu...

win10子系统python开发环境准备及kenlm和nltk的使用教程

前言 因为NLP作业需要用到kenlm,而kenlm在linux下更为方便。本人win10之前开启了子系统,所以就打算在子系统下进行相关作业的完成。 首先开启win10子系统,网上教...