在Pytorch中使用样本权重(sample_weight)的正确方法

yipeiwu_com6年前Python基础

step:

1.将标签转换为one-hot形式。

2.将每一个one-hot标签中的1改为预设样本权重的值

即可在Pytorch中使用样本权重。

eg:

对于单个样本:loss = - Q * log(P),如下:

P = [0.1,0.2,0.4,0.3]
Q = [0,0,1,0]
loss = -Q * np.log(P)

增加样本权重则为loss = - Q * log(P) *sample_weight

P = [0.1,0.2,0.4,0.3]
Q = [0,0,sample_weight,0]
loss_samle_weight = -Q * np.log(P)

在pytorch中示例程序

train_data = np.load(open('train_data.npy','rb'))
train_labels = []
for i in range(8):
  train_labels += [i] *100
train_labels = np.array(train_labels)
train_labels = to_categorical(train_labels).astype("float32")
sample_1 = [random.random() for i in range(len(train_data))]
for i in range(len(train_data)):
  floor = i / 100
  train_labels[i][floor] = sample_1[i]
train_data = torch.from_numpy(train_data) 
train_labels = torch.from_numpy(train_labels) 
dataset = dataf.TensorDataset(train_data,train_labels) 
trainloader = dataf.DataLoader(dataset, batch_size=batch_size, shuffle=True)

对应one-target的多分类交叉熵损失函数如下:

def my_loss(outputs, targets):
  
  output2 = outputs - torch.max(outputs, 1, True)[0]
 
 
  P = torch.exp(output2) / torch.sum(torch.exp(output2), 1,True) + 1e-10
 
 
  loss = -torch.mean(targets * torch.log(P))
 
 
  return loss

以上这篇在Pytorch中使用样本权重(sample_weight)的正确方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

用python脚本24小时刷浏览器的访问量方法

如下所示: # -*- coding=utf-8 -*- import urllib2 import socket import time urls = raw_input("...

详解通过API管理或定制开发ECS实例

弹性管理 ECS 实例 获取 RAM 子账号 AK 密钥 使用API管理ECS实例,您需要能访问ECS资源的API密钥(AccessKey ID 和 AccessKey Secret)...

Python从ZabbixAPI获取信息及实现Zabbix-API 监控的方法

Python从ZabbixAPI获取信息及实现Zabbix-API 监控的方法

Python编写从ZabbixAPI获取信息 此脚本用Python3.6执行是OK的。 # -*- coding: utf-8 -*- import json import urll...

Python3.5模块的定义、导入、优化操作图文详解

Python3.5模块的定义、导入、优化操作图文详解

本文实例讲述了Python3.5模块的定义、导入、优化操作。分享给大家供大家参考,具体如下: 1、模块体系大纲 2、模块的定义 模块的本质:是一个.py格式的Python文件。文件...

Python语言描述机器学习之Logistic回归算法

Python语言描述机器学习之Logistic回归算法

本文介绍机器学习中的Logistic回归算法,我们使用这个算法来给数据进行分类。Logistic回归算法同样是需要通过样本空间学习的监督学习算法,并且适用于数值型和标称型数据,例如,我们...