在Pytorch中使用样本权重(sample_weight)的正确方法

yipeiwu_com5年前Python基础

step:

1.将标签转换为one-hot形式。

2.将每一个one-hot标签中的1改为预设样本权重的值

即可在Pytorch中使用样本权重。

eg:

对于单个样本:loss = - Q * log(P),如下:

P = [0.1,0.2,0.4,0.3]
Q = [0,0,1,0]
loss = -Q * np.log(P)

增加样本权重则为loss = - Q * log(P) *sample_weight

P = [0.1,0.2,0.4,0.3]
Q = [0,0,sample_weight,0]
loss_samle_weight = -Q * np.log(P)

在pytorch中示例程序

train_data = np.load(open('train_data.npy','rb'))
train_labels = []
for i in range(8):
  train_labels += [i] *100
train_labels = np.array(train_labels)
train_labels = to_categorical(train_labels).astype("float32")
sample_1 = [random.random() for i in range(len(train_data))]
for i in range(len(train_data)):
  floor = i / 100
  train_labels[i][floor] = sample_1[i]
train_data = torch.from_numpy(train_data) 
train_labels = torch.from_numpy(train_labels) 
dataset = dataf.TensorDataset(train_data,train_labels) 
trainloader = dataf.DataLoader(dataset, batch_size=batch_size, shuffle=True)

对应one-target的多分类交叉熵损失函数如下:

def my_loss(outputs, targets):
  
  output2 = outputs - torch.max(outputs, 1, True)[0]
 
 
  P = torch.exp(output2) / torch.sum(torch.exp(output2), 1,True) + 1e-10
 
 
  loss = -torch.mean(targets * torch.log(P))
 
 
  return loss

以上这篇在Pytorch中使用样本权重(sample_weight)的正确方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python中PIL安装简单教程

python 的PIL安装是一件很头疼的的事, 如果你要在python 中使用图型程序那怕只是将个图片从二进制流中存盘(例如使用Scrapy 爬网存图),那么都会使用到 PIL 这库,而...

python 处理telnet返回的More,以及get想要的那个参数方法

问题: 需要循环获取网元返回的某个参数,并计算出平均值。 解决方案: 通过expect解决返回More的问题。 通过具体的参数位置,精确获取到参数。 讨论: 参数位置固定,不好复用。...

pycharm显示远程图片的实现

pycharm显示远程图片的实现

首先,你要知道pycharm可以通过ssh链接到远程服务器,并且也能够用pycharm运行远程服务器的代码。可以参考/post/173477.htm 这里配置 远程图片显示问题 如果上...

在Python的struct模块中进行数据格式转换的方法

在Python的struct模块中进行数据格式转换的方法

Python是一门非常简洁的语言,对于数据类型的表示,不像其他语言预定义了许多类型(如:在C#中,光整型就定义了8种),它只定义了六种基本类型:字符串,整数,浮点数,元组,列表,字典。通...

Python FtpLib模块应用操作详解

本文实例讲述了Python FtpLib模块应用操作。分享给大家供大家参考,具体如下: Python之FtpLib模块应用 工厂中有这样的应用场景: 需要不间断地把设备电脑生成的数据文件...