基于pytorch的保存和加载模型参数的方法

yipeiwu_com6年前Python基础

当我们花费大量的精力训练完网络,下次预测数据时不想再(有时也不必再)训练一次时,这时候torch.save(),torch.load()就要登场了。

保存和加载模型参数有两种方式:

方式一:

torch.save(net.state_dict(),path):

功能:保存训练完的网络的各层参数(即weights和bias)

其中:net.state_dict()获取各层参数,path是文件存放路径(通常保存文件格式为.pt或.pth)

net2.load_state_dict(torch.load(path)):

功能:加载保存到path中的各层参数到神经网络

注意:不可以直接为torch.load_state_dict(path),此函数不能直接接收字符串类型参数

方式二:

torch.save(net,path):

功能:保存训练完的整个网络模型(不止weights和bias)

net2=torch.load(path):

功能:加载保存到path中的整个神经网络

说明:官方推荐方式一,原因自然是保存的内容少,速度会更快。

以上这篇基于pytorch的保存和加载模型参数的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python中反射和描述器总结

反射 在Python中,能够通过一个对象,找出type、class、attribute或者method的能力,成为反射。 函数与方法 内建函数: getattr(object,name[...

理论讲解python多进程并发编程

理论讲解python多进程并发编程

一、什么是进程 进程:正在进行的一个过程或者说一个任务。而负责执行任务则是cpu。 二、进程与程序的区别 程序:仅仅是一堆代 进程:是指打开程序运行的过程 三、并发与并行 并发与并行是指...

Python中处理unchecked未捕获异常实例

Talk Is Cheap 和Java一样,python也提供了对于checked exception和unchecked exception. 对于checked exception,...

Python for循环中的陷阱详解

Python for循环中的陷阱详解

前言 Python 中的 for 循环和其他语言中的 for 循环工作方式是不一样的,今天就带你深入了解 Python 的 for 循环,看看它是如何工作的,以及它为什么按照这种方式工作...

简单学习Python多进程Multiprocessing

简单学习Python多进程Multiprocessing

1.1 什么是 Multiprocessing 多线程在同一时间只能处理一个任务。 可把任务平均分配给每个核,而每个核具有自己的运算空间。 1.2 添加进程 Process 与线程类似,...