Pytorch反向求导更新网络参数的方法

yipeiwu_com6年前Python基础

方法一:手动计算变量的梯度,然后更新梯度

import torch
from torch.autograd import Variable
# 定义参数
w1 = Variable(torch.FloatTensor([1,2,3]),requires_grad = True)
# 定义输出
d = torch.mean(w1)
# 反向求导
d.backward()
# 定义学习率等参数
lr = 0.001
# 手动更新参数
w1.data.zero_() # BP求导更新参数之前,需先对导数置0
w1.data.sub_(lr*w1.grad.data)

一个网络中通常有很多变量,如果按照上述的方法手动求导,然后更新参数,是很麻烦的,这个时候可以调用torch.optim

方法二:使用torch.optim

import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.optim as optim
# 这里假设我们定义了一个网络,为net
steps = 10000
# 定义一个optim对象
optimizer = optim.SGD(net.parameters(), lr = 0.01)
# 在for循环中更新参数
for i in range(steps):
 optimizer.zero_grad() # 对网络中参数当前的导数置0
 output = net(input) # 网络前向计算
 loss = criterion(output, target) # 计算损失
 loss.backward() # 得到模型中参数对当前输入的梯度
 optimizer.step() # 更新参数

注意:torch.optim只用于参数更新和对参数的梯度置0,不能计算参数的梯度,在使用torch.optim进行参数更新之前,需要写前向与反向传播求导的代码

以上这篇Pytorch反向求导更新网络参数的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

简单实现python聊天程序

本文实例为大家分享了简单实现python聊天程序的具体代码,供大家参考,具体内容如下 客户端 #coding:utf-8 import socket, sys host = 'lo...

Linux下使用python自动修改本机网关代码分享

#!/usr/bin/python #auto change gateway Created By mickelfeng import os import random,re g='...

Python中的字符串查找操作方法总结

基本的字符串位置查找方法 Python 查找字符串使用 变量.find("要查找的内容"[,开始位置,结束位置]),开始位置和结束位置,表示要查找的范围,为空则表示查找所有。查找到后会返...

编写同时兼容Python2.x与Python3.x版本的代码的几个示例

编写兼容Python2.x与3.x代码 当我们正处于Python 2.x到Python 3.x的过渡期时,你可能想过是否可以在不修改任何代码的前提下能同时运行在Python 2和3中。这...

对python的输出和输出格式详解

对python的输出和输出格式详解

输出 1. 普通的输出 # 打印提示 print('hello world') 用print()在括号中加上字符串,就可以向屏幕上输出指定的文字。比如输出'hello, world...