Pytorch反向求导更新网络参数的方法

yipeiwu_com5年前Python基础

方法一:手动计算变量的梯度,然后更新梯度

import torch
from torch.autograd import Variable
# 定义参数
w1 = Variable(torch.FloatTensor([1,2,3]),requires_grad = True)
# 定义输出
d = torch.mean(w1)
# 反向求导
d.backward()
# 定义学习率等参数
lr = 0.001
# 手动更新参数
w1.data.zero_() # BP求导更新参数之前,需先对导数置0
w1.data.sub_(lr*w1.grad.data)

一个网络中通常有很多变量,如果按照上述的方法手动求导,然后更新参数,是很麻烦的,这个时候可以调用torch.optim

方法二:使用torch.optim

import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.optim as optim
# 这里假设我们定义了一个网络,为net
steps = 10000
# 定义一个optim对象
optimizer = optim.SGD(net.parameters(), lr = 0.01)
# 在for循环中更新参数
for i in range(steps):
 optimizer.zero_grad() # 对网络中参数当前的导数置0
 output = net(input) # 网络前向计算
 loss = criterion(output, target) # 计算损失
 loss.backward() # 得到模型中参数对当前输入的梯度
 optimizer.step() # 更新参数

注意:torch.optim只用于参数更新和对参数的梯度置0,不能计算参数的梯度,在使用torch.optim进行参数更新之前,需要写前向与反向传播求导的代码

以上这篇Pytorch反向求导更新网络参数的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python 基于wxpy库实现微信添加好友功能(简洁)

Python 基于wxpy库实现微信添加好友功能(简洁)

Github:https://github.com/Lyo-hub/wxpy_AddFriend 本程序为基于wxpy库实现的。 1.打开cmd导入一下库。 2.修改库文件中ad...

浅析python中SQLAlchemy排序的一个坑

前言 SQLAlchemy是Python编程语言下的一款ORM框架,该框架建立在数据库API之上,使用关系对象映射进行数据库操作,简言之便是:将对象转换成SQL,然后使用数据API执行S...

Python实现翻转数组功能示例

本文实例讲述了Python实现翻转数组功能。分享给大家供大家参考,具体如下: 题目描述 给定一个长度为n的整数数组a,元素均不相同,问数组是否存在这样一个片段,只将该片段翻转就可以使整个...

python实现telnet客户端的方法

本文实例讲述了python实现telnet客户端的方法。分享给大家供大家参考。具体如下: python实现的telnet客户端程序,python自带一个telnetlib模块,可以通过其...

python插入排序算法的实现代码

1.算法:设有一组关键字{ K 1 , K 2 ,…, K n };排序开始就认为 K 1 是一个有序序列;让 K 2 插入上述表长为 1 的有序序列,使之成为一个表长为 2 的有序序列...