对Pytorch中nn.ModuleList 和 nn.Sequential详解

yipeiwu_com6年前Python基础

简而言之就是,nn.Sequential类似于Keras中的贯序模型,它是Module的子类,在构建数个网络层之后会自动调用forward()方法,从而有网络模型生成。而nn.ModuleList仅仅类似于pytho中的list类型,只是将一系列层装入列表,并没有实现forward()方法,因此也不会有网络模型产生的副作用。

需要注意的是,nn.ModuleList接受的必须是subModule类型,例如:

nn.ModuleList(
      [nn.ModuleList([Conv(inp_dim + j * increase, oup_dim, 1, relu=False, bn=False) for j in range(5)]) for i in
       range(nstack)])

其中,二次嵌套的list内部也必须额外使用一个nn.ModuleList修饰实例化,否则会无法识别类型而报错!

摘录自

nn.ModuleList is just like a Python list. It was designed to store any desired number of nn.Module's. It may be useful, for instance, if you want to design a neural network whose number of layers is passed as input:

class LinearNet(nn.Module):
 def __init__(self, input_size, num_layers, layers_size, output_size):
   super(LinearNet, self).__init__()
 
   self.linears = nn.ModuleList([nn.Linear(input_size, layers_size)])
   self.linears.extend([nn.Linear(layers_size, layers_size) for i in range(1, self.num_layers-1)])
   self.linears.append(nn.Linear(layers_size, output_size)

nn.Sequential allows you to build a neural net by specifying sequentially the building blocks (nn.Module's) of that net. Here's an example:

class Flatten(nn.Module):
 def forward(self, x):
  N, C, H, W = x.size() # read in N, C, H, W
  return x.view(N, -1)
 
simple_cnn = nn.Sequential(
      nn.Conv2d(3, 32, kernel_size=7, stride=2),
      nn.ReLU(inplace=True),
      Flatten(), 
      nn.Linear(5408, 10),
     )

In nn.Sequential, the nn.Module's stored inside are connected in a cascaded way. For instance, in the example that I gave, I define a neural network that receives as input an image with 3 channels and outputs 10 neurons. That network is composed by the following blocks, in the following order: Conv2D -> ReLU -> Linear layer. Moreover, an object of type nn.Sequential has a forward() method, so if I have an input image x I can directly call y = simple_cnn(x) to obtain the scores for x. When you define an nn.Sequential you must be careful to make sure that the output size of a block matches the input size of the following block. Basically, it behaves just like a nn.Module

On the other hand, nn.ModuleList does not have a forward() method, because it does not define any neural network, that is, there is no connection between each of the nn.Module's that it stores. You may use it to store nn.Module's, just like you use Python lists to store other types of objects (integers, strings, etc). The advantage of using nn.ModuleList's instead of using conventional Python lists to store nn.Module's is that Pytorch is “aware” of the existence of the nn.Module's inside an nn.ModuleList, which is not the case for Python lists. If you want to understand exactly what I mean, just try to redefine my class LinearNet using a Python list instead of a nn.ModuleList and train it. When defining the optimizer() for that net, you'll get an error saying that your model has no parameters, because PyTorch does not see the parameters of the layers stored in a Python list. If you use a nn.ModuleList instead, you'll get no error.

以上这篇对Pytorch中nn.ModuleList 和 nn.Sequential详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python3基于OpenCV实现证件照背景替换

本文实例为大家分享了python3实现证件照背景替换的具体代码,供大家参考,具体内容如下 import cv2 import numpy as np img=cv2.imread(...

Python Django 实现简单注册功能过程详解

Python Django 实现简单注册功能过程详解

项目创建略,可参考Python Django Vue 项目创建。 目录结构如下 编辑views.py from django.shortcuts import render #...

python删除过期文件的方法

本文实例讲述了python删除过期文件的方法。分享给大家供大家参考。具体实现方法如下: # remove all jpeg image files of an expired mod...

python return逻辑判断表达式实现解析

这篇文章主要介绍了python return逻辑判断表达式实现解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 一.return逻辑...

python用win32gui遍历窗口并设置窗口位置的方法

最近电脑打开某个软件却看不见窗口,在任务栏上看到软件明明已经运行,猜想一定是什么原因造成软件窗口位置偏离屏幕的有效坐标太远。尝试重启电脑,重装软件,都没有解决,看来是在注册表存储了位置信...