对Pytorch中nn.ModuleList 和 nn.Sequential详解

yipeiwu_com5年前Python基础

简而言之就是,nn.Sequential类似于Keras中的贯序模型,它是Module的子类,在构建数个网络层之后会自动调用forward()方法,从而有网络模型生成。而nn.ModuleList仅仅类似于pytho中的list类型,只是将一系列层装入列表,并没有实现forward()方法,因此也不会有网络模型产生的副作用。

需要注意的是,nn.ModuleList接受的必须是subModule类型,例如:

nn.ModuleList(
      [nn.ModuleList([Conv(inp_dim + j * increase, oup_dim, 1, relu=False, bn=False) for j in range(5)]) for i in
       range(nstack)])

其中,二次嵌套的list内部也必须额外使用一个nn.ModuleList修饰实例化,否则会无法识别类型而报错!

摘录自

nn.ModuleList is just like a Python list. It was designed to store any desired number of nn.Module's. It may be useful, for instance, if you want to design a neural network whose number of layers is passed as input:

class LinearNet(nn.Module):
 def __init__(self, input_size, num_layers, layers_size, output_size):
   super(LinearNet, self).__init__()
 
   self.linears = nn.ModuleList([nn.Linear(input_size, layers_size)])
   self.linears.extend([nn.Linear(layers_size, layers_size) for i in range(1, self.num_layers-1)])
   self.linears.append(nn.Linear(layers_size, output_size)

nn.Sequential allows you to build a neural net by specifying sequentially the building blocks (nn.Module's) of that net. Here's an example:

class Flatten(nn.Module):
 def forward(self, x):
  N, C, H, W = x.size() # read in N, C, H, W
  return x.view(N, -1)
 
simple_cnn = nn.Sequential(
      nn.Conv2d(3, 32, kernel_size=7, stride=2),
      nn.ReLU(inplace=True),
      Flatten(), 
      nn.Linear(5408, 10),
     )

In nn.Sequential, the nn.Module's stored inside are connected in a cascaded way. For instance, in the example that I gave, I define a neural network that receives as input an image with 3 channels and outputs 10 neurons. That network is composed by the following blocks, in the following order: Conv2D -> ReLU -> Linear layer. Moreover, an object of type nn.Sequential has a forward() method, so if I have an input image x I can directly call y = simple_cnn(x) to obtain the scores for x. When you define an nn.Sequential you must be careful to make sure that the output size of a block matches the input size of the following block. Basically, it behaves just like a nn.Module

On the other hand, nn.ModuleList does not have a forward() method, because it does not define any neural network, that is, there is no connection between each of the nn.Module's that it stores. You may use it to store nn.Module's, just like you use Python lists to store other types of objects (integers, strings, etc). The advantage of using nn.ModuleList's instead of using conventional Python lists to store nn.Module's is that Pytorch is “aware” of the existence of the nn.Module's inside an nn.ModuleList, which is not the case for Python lists. If you want to understand exactly what I mean, just try to redefine my class LinearNet using a Python list instead of a nn.ModuleList and train it. When defining the optimizer() for that net, you'll get an error saying that your model has no parameters, because PyTorch does not see the parameters of the layers stored in a Python list. If you use a nn.ModuleList instead, you'll get no error.

以上这篇对Pytorch中nn.ModuleList 和 nn.Sequential详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python 机器学习之支持向量机非线性回归SVR模型

python 机器学习之支持向量机非线性回归SVR模型

本文介绍了python 支持向量机非线性回归SVR模型,废话不多说,具体如下: import numpy as np import matplotlib.pyplot as plt...

python通过字典dict判断指定键值是否存在的方法

本文实例讲述了python通过字典dict判断指定键值是否存在的方法。分享给大家供大家参考。具体如下: python中有两种方法可以判断指定的键值是否存在,一种是通过字典对象的方法 ha...

pycharm 安装JPype的教程

pycharm 安装JPype的教程

配置hanlp 分词器时经常要用jpype,在这里记录一下,pychram 中要成功调用hanlp分词器的过程 我的hanlp 文件已经有了,在hanlp文档中。要把初始路径改为ha...

Python操作Word批量生成文章的方法

Python操作Word批量生成文章的方法

下面通过COM让Python与Word建立连接实现Python操作Word批量生成文章,具体介绍请看下文: 需要做一些会议记录。总共有多少呢?五个地点x7个月份x每月4篇=140篇。虽然...

Python模块结构与布局操作方法实例分析

本文实例讲述了Python模块结构与布局操作方法。分享给大家供大家参考,具体如下: #coding=utf8 #起始行 #!/usr/bin/env python #模块文档 '''...