浅析PyTorch中nn.Module的使用

yipeiwu_com6年前Python基础

torch.nn.Modules 相当于是对网络某种层的封装,包括网络结构以及网络参数和一些操作

torch.nn.Module 是所有神经网络单元的基类

查看源码

初始化部分:

def __init__(self):
  self._backend = thnn_backend
  self._parameters = OrderedDict()
  self._buffers = OrderedDict()
  self._backward_hooks = OrderedDict()
  self._forward_hooks = OrderedDict()
  self._forward_pre_hooks = OrderedDict()
  self._state_dict_hooks = OrderedDict()
  self._load_state_dict_pre_hooks = OrderedDict()
  self._modules = OrderedDict()
  self.training = True
 

属性解释:

  • _parameters:字典,保存用户直接设置的 Parameter
  • _modules:子 module,即子类构造函数中的内容
  • _buffers:缓存
  • _backward_hooks与_forward_hooks:钩子技术,用来提取中间变量
  • training:判断值来决定前向传播策略

方法定义:

def forward(self, *input):
 raise NotImplementedError
 

没有实际内容,用于被子类的 forward() 方法覆盖

且 forward 方法在 __call__ 方法中被调用:

def __call__(self, *input, **kwargs):
 for hook in self._forward_pre_hooks.values():
    hook(self, input)
  if torch._C._get_tracing_state():
    result = self._slow_forward(*input, **kwargs)
  else:
    result = self.forward(*input, **kwargs)
  ...
  ...
 

实例展示

简单搭建:

import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):
  def __init__(self, n_feature, n_hidden, n_output):
    super(Net, self).__init__()
    self.hidden = nn.Linear(n_feature, n_hidden)
    self.out = nn.Linear(n_hidden, n_output)

  def forward(self, x):
    x = F.relu(self.hidden(x))
    x = self.out(x)
    return x

Net 类继承了 torch 的 Module 和 __init__ 功能

hidden 是隐藏层线性输出

out 是输出层线性输出

打印出网络的结构:

>>> net = Net(n_feature=10, n_hidden=30, n_output=15)
>>> print(net)
Net(
 (hidden): Linear(in_features=10, out_features=30, bias=True)
 (out): Linear(in_features=30, out_features=15, bias=True)
)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

浅析Django下关于session的使用

浅析Django下关于session的使用

一、Session的概念 cookie是在浏览器端保存键值对数据,而session是在服务器端保存键值对数据 session 的使用依赖 cookie:在使用Session后,会在Coo...

python 获取list特定元素下标的实例讲解

python 获取list特定元素下标的实例讲解

在平时开发过程中,经常遇到需要在数据中获取特定的元素的信息,如到达目的地最近的车站,橱窗里面最贵的物品等等。怎么办?看下面 方法一: 利用数组自身的特性 a.index(target),...

python 接口_从协议到抽象基类详解

python 接口_从协议到抽象基类详解

抽象基类的常见用途:实现接口时作为超类使用。然后,说明抽象基类如何检查具体子类是否符合接口定义,以及如何使用注册机制声明一个类实现了某个接口,而不进行子类化操作。最后,说明如何让抽象基类...

两个元祖T1=('a', 'b'),T2=('c', 'd')使用匿名函数将其转变成[{'a': 'c'},{'b': 'd'}]的几种方法

一道Python面试题的几种解答: 两个元祖T1=('a', 'b'), T2=('c', 'd'),请使用匿名函数将其转变成[{'a': 'c'}, {'b': 'd'}] 方法一:...

Python 正则表达式实现计算器功能

Python 正则表达式实现计算器功能

需求: 用户输入运算表达式,终端显示计算结果 代码: # !/usr/bin/env/ python3 # -*- coding: utf-8 -*- """用户输入计算表达式,显...