对Pytorch神经网络初始化kaiming分布详解

yipeiwu_com5年前Python基础

函数的增益值

torch.nn.init.calculate_gain(nonlinearity, param=None)

提供了对非线性函数增益值的计算。

增益值gain是一个比例值,来调控输入数量级和输出数量级之间的关系。

fan_in和fan_out

pytorch计算fan_in和fan_out的源码


def _calculate_fan_in_and_fan_out(tensor):
 dimensions = tensor.ndimension()
 if dimensions < 2:
  raise ValueError("Fan in and fan out can not be computed 
  for tensor with fewer than 2 dimensions")

 if dimensions == 2: # Linear
  fan_in = tensor.size(1)
  fan_out = tensor.size(0)
 else:
  num_input_fmaps = tensor.size(1)
  num_output_fmaps = tensor.size(0)
  receptive_field_size = 1
  if tensor.dim() > 2:
   receptive_field_size = tensor[0][0].numel()
  fan_in = num_input_fmaps * receptive_field_size
  fan_out = num_output_fmaps * receptive_field_size

 return fan_in, fan_out

xavier分布

xavier分布解析:https://prateekvjoshi.com/2016/03/29/understanding-xavier-initialization-in-deep-neural-networks/

假设使用的是sigmoid函数。当权重值(值指的是绝对值)过小,输入值每经过网络层,方差都会减少,每一层的加权和很小,在sigmoid函数0附件的区域相当于线性函数,失去了DNN的非线性性。

当权重的值过大,输入值经过每一层后方差会迅速上升,每层的输出值将会很大,此时每层的梯度将会趋近于0.

xavier初始化可以使得输入值x x x<math><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math>x方差经过网络层后的输出值y y y<math><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">y</annotation></semantics></math>y方差不变。

(1)xavier的均匀分布

torch.nn.init.xavier_uniform_(tensor, gain=1)

也称为Glorot initialization。

>>> w = torch.empty(3, 5)
>>> nn.init.xavier_uniform_(w, gain=nn.init.calculate_gain('relu'))

(2) xavier正态分布

torch.nn.init.xavier_normal_(tensor, gain=1)

也称为Glorot initialization。

kaiming分布

Xavier在tanh中表现的很好,但在Relu激活函数中表现的很差,所何凯明提出了针对于relu的初始化方法。pytorch默认使用kaiming正态分布初始化卷积层参数。

(1) kaiming均匀分布

torch.nn.init.kaiming_uniform_
 (tensor, a=0, mode='fan_in', nonlinearity='leaky_relu')

也被称为 He initialization。

a – the negative slope of the rectifier used after this layer (0 for ReLU by default).激活函数的负斜率,

mode – either ‘fan_in' (default) or ‘fan_out'. Choosing fan_in preserves the magnitude of the variance of the weights in the forward pass. Choosing fan_out preserves the magnitudes in the backwards

pass.默认为fan_in模式,fan_in可以保持前向传播的权重方差的数量级,fan_out可以保持反向传播的权重方差的数量级。

>>> w = torch.empty(3, 5)
>>> nn.init.kaiming_uniform_(w, mode='fan_in', nonlinearity='relu')

(2) kaiming正态分布

torch.nn.init.kaiming_normal_
 (tensor, a=0, mode='fan_in', nonlinearity='leaky_relu')

也被称为 He initialization。

 >>> w = torch.empty(3, 5)
>>> nn.init.kaiming_normal_(w, mode='fan_out', nonlinearity='relu')

以上这篇对Pytorch神经网络初始化kaiming分布详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python3.6环境安装+pip环境配置教程图文详解

python3.6环境安装+pip环境配置教程图文详解

1、python安装可以跨平台 2、有两个版本2.7和3.6,第三方库适用2.7版,两个版本不兼容 windows安装: 第一种方法官网安装: 在官网下载安装包如图: 图下点击是默认下...

使用python获取(宜宾市地震信息)地震信息

使用python获取(宜宾市地震信息)地震信息

6月17日22分25分,四川省宜宾市长宁县发生了6.0级地震,成都高新减灾研究所与应急管理部门联合建设的大陆地震预警网成功预警本次地震,提前10秒向宜宾市预警,提前61秒向成都预警。...

python3的UnicodeDecodeError解决方法

python3的UnicodeDecodeError解决方法

爬虫部分解码异常 response.content.decode() # 默认使用 utf-8 出现解码异常 以下是设计的通用解码 通过 text 获取编码 # 通过...

python基础教程之元组操作使用详解

简介 tuple 1.元组是以圆括号“()”包围的数据集合,不同成员以“,”分隔。通过下标进行访问 2.不可变序列,可以看做不可变的列表,与列表不同:元组中数据一旦确立就不能改变(所以没...

python实现从字符串中找出字符1的位置以及个数的方法

本文实例主要实现给出任意字符串,获取字符串中某字符的位置以及出现的总次数。 实现该功能代码的时候可以使用函数enumerate来将字符串分离成位置和字符,然后进行比较即可。 具体实现代码...