在PyTorch中Tensor的查找和筛选例子

yipeiwu_com6年前Python基础

本文源码基于版本1.0,交互界面基于0.4.1

import torch

按照指定轴上的坐标进行过滤

index_select()

沿着某tensor的一个轴dim筛选若干个坐标

>>> x = torch.randn(3, 4) # 目标矩阵
>>> x
tensor([[ 0.1427, 0.0231, -0.5414, -1.0009],
    [-0.4664, 0.2647, -0.1228, -1.1068],
    [-1.1734, -0.6571, 0.7230, -0.6004]])
>>> indices = torch.tensor([0, 2]) # 在轴上筛选坐标
>>> torch.index_select(x, dim=0, indices) # 指定筛选对象、轴、筛选坐标
tensor([[ 0.1427, 0.0231, -0.5414, -1.0009],
    [-1.1734, -0.6571, 0.7230, -0.6004]])
>>> torch.index_select(x, dim=1, indices)
tensor([[ 0.1427, -0.5414],
    [-0.4664, -0.1228],
    [-1.1734, 0.7230]])

where()

用于将两个broadcastable的tensor组合成新的tensor,类似于c++中的三元操作符“?:”

>>> x = torch.randn(3, 2)
>>> y = torch.ones(3, 2)
>>> torch.where(x > 0, x, y)
tensor([[1.4013, 1.0000],
    [1.0000, 0.9267],
    [1.0000, 0.4302]])
>>> x
tensor([[ 1.4013, -0.9960],
    [-0.3715, 0.9267],
    [-0.7163, 0.4302]])

指定条件返回01-tensor

>>> x = torch.arange(5)  
>>> x
tensor([0, 1, 2, 3, 4])
>>> torch.gt(x,1) # 大于
tensor([0, 0, 1, 1, 1], dtype=torch.uint8)
>>> x>1   # 大于
tensor([0, 0, 1, 1, 1], dtype=torch.uint8)
>>> torch.ne(x,1) # 不等于
tensor([1, 0, 1, 1, 1], dtype=torch.uint8)
>>> x!=1  # 不等于
tensor([1, 0, 1, 1, 1], dtype=torch.uint8)
>>> torch.lt(x,3) # 小于
tensor([1, 1, 1, 0, 0], dtype=torch.uint8)
>>> x<3   # 小于
tensor([1, 1, 1, 0, 0], dtype=torch.uint8)
>>> torch.eq(x,3) # 等于
tensor([0, 0, 0, 1, 0], dtype=torch.uint8)
>>> x==3  # 等于
tensor([0, 0, 0, 1, 0], dtype=torch.uint8)

返回索引

>>> x = torch.arange(5)
>>> x  # 1维
tensor([0, 1, 2, 3, 4])
>>> torch.nonzero(x)
tensor([[1],
    [2],
    [3],
    [4]])
>>> x = torch.Tensor([[0.6, 0.0, 0.0, 0.0],[0.0, 0.4, 0.0, 0.0],[0.0, 0.0, 1.2, 0.0],[0.0, 0.0, 0.0,-0.4]])
>>> x  # 2维
tensor([[ 0.6000, 0.0000, 0.0000, 0.0000],
    [ 0.0000, 0.4000, 0.0000, 0.0000],
    [ 0.0000, 0.0000, 1.2000, 0.0000],
    [ 0.0000, 0.0000, 0.0000, -0.4000]])
>>> torch.nonzero(x)
tensor([[0, 0],
    [1, 1],
    [2, 2],
    [3, 3]])

借助nonzero()我们可以返回符合某一条件的index(https://stackoverflow.com/questions/47863001/how-pytorch-tensor-get-the-index-of-specific-value

>>> x=torch.arange(12).view(3,4)
>>> x
tensor([[ 0, 1, 2, 3],
    [ 4, 5, 6, 7],
    [ 8, 9, 10, 11]])
>>> (x>4).nonzero()
tensor([[1, 1],
    [1, 2],
    [1, 3],
    [2, 0],
    [2, 1],
    [2, 2],
    [2, 3]])

以上这篇在PyTorch中Tensor的查找和筛选例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python 转义字符详细介绍

Python 转义字符 在需要在字符中使用特殊字符时,python用反斜杠(\)转义字符。如下表: 原始字符串 有时我们并不想让转义字符生效,我们只想显示字符串原来的意思,这就要用r和...

python模拟登陆阿里妈妈生成商品推广链接

淘宝官方有获取商品推广链接的API,但该API属于增值API 普通开发者没有调用权限 需要申请开通 备注:登陆采用的是阿里妈妈账号登陆非淘宝账号登陆 复制代码 代码如下:#coding:...

Pycharm中Python环境配置常见问题解析

Pycharm中Python环境配置常见问题解析

本文实例讲述了Pycharm中Python环境配置常见问题。分享给大家供大家参考,具体如下: 1、问题的发现 最近在用Pycharm下的命令行工具安装、运行jupyter noteboo...

基于Python开发chrome插件的方法分析

基于Python开发chrome插件的方法分析

本文实例讲述了基于Python开发chrome插件的方法。分享给大家供大家参考,具体如下: 谷歌Chrome插件是使用HTML、JavaScript和CSS编写的。如果你之前从来没有写过...

python特性语法之遍历、公共方法、引用

一、遍历 通过for。。。in。。。的语法结构,我们可以遍历字符串、列表、元组、字典等数据结构。 1、字符串遍历 a_str = "hello world" for char in...