浅析PyTorch中nn.Linear的使用

yipeiwu_com6年前Python基础

查看源码

Linear 的初始化部分:

class Linear(Module):
 ...
 __constants__ = ['bias']
 
 def __init__(self, in_features, out_features, bias=True):
   super(Linear, self).__init__()
   self.in_features = in_features
   self.out_features = out_features
   self.weight = Parameter(torch.Tensor(out_features, in_features))
   if bias:
     self.bias = Parameter(torch.Tensor(out_features))
   else:
     self.register_parameter('bias', None)
   self.reset_parameters()
 ...
 

需要实现的内容:

计算步骤:

@weak_script_method
  def forward(self, input):
    return F.linear(input, self.weight, self.bias)

返回的是:input * weight + bias

对于 weight

weight: the learnable weights of the module of shape
  :math:`(\text{out\_features}, \text{in\_features})`. The values are
  initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where
  :math:`k = \frac{1}{\text{in\_features}}`

对于 bias

bias:  the learnable bias of the module of shape :math:`(\text{out\_features})`.
    If :attr:`bias` is ``True``, the values are initialized from
    :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
    :math:`k = \frac{1}{\text{in\_features}}`

实例展示

举个例子:

>>> import torch
>>> nn1 = torch.nn.Linear(100, 50)
>>> input1 = torch.randn(140, 100)
>>> output1 = nn1(input1)
>>> output1.size()
torch.Size([140, 50])
 

张量的大小由 140 x 100 变成了 140 x 50

执行的操作是:

[140,100]×[100,50]=[140,50]

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

selenium处理元素定位点击无效问题

在WEB自动化测试过程中,经常会遇到这样的问题: 元素定位到了,但是点击无效?有人可能会问了,怎么判断元素定位到了,这个问题很好判断 1.给元素加高亮显示 self.driver...

Python编码类型转换方法详解

本文实例讲述了Python编码类型转换方法。分享给大家供大家参考,具体如下: 1:Python和unicode 为了正确处理多语言文本,Python在2.0版后引入了Unicode字符串...

python 中的int()函数怎么用

int(x, [base]) 功能: 函数的作用是将一个数字或base类型的字符串转换成整数。 函数原型: int(x=0) int(x, base=10),base缺省值为10,也就是...

Python用61行代码实现图片像素化的示例代码

Python用61行代码实现图片像素化的示例代码

起因 看到网上的像素图片,感觉蛮有趣的,就打算用python一些PIL类库写一个。 实现思路 把一张图片分成多个块,每个块的颜色都等于这个色块中颜色最多的颜色,如下图。 这个图...

使用python3实现操作串口详解

通过引用serial模块包,来操作串口。 1、查看串口名称 在Linux和Windows中,串口的名字规则不太一样。 需要事先查看。 Linux下的查看串口命令 root@D2:...