pytorch 更改预训练模型网络结构的方法

yipeiwu_com5年前Python基础

一个继承nn.module的model它包含一个叫做children()的函数,这个函数可以用来提取出model每一层的网络结构,在此基础上进行修改即可,修改方法如下(去除后两层):

resnet_layer = nn.Sequential(*list(model.children())[:-2])

那么,接下来就可以构建我们的网络了:

class Net(nn.Module):
  def __init__(self , model):
    super(Net, self).__init__()
    #取掉model的后两层
    self.resnet_layer = nn.Sequential(*list(model.children())[:-2])
    
    self.transion_layer = nn.ConvTranspose2d(2048, 2048, kernel_size=14, stride=3)
    self.pool_layer = nn.MaxPool2d(32) 
    self.Linear_layer = nn.Linear(2048, 8)
    
  def forward(self, x):
    x = self.resnet_layer(x)
 
    x = self.transion_layer(x)
 
    x = self.pool_layer(x)
 
    x = x.view(x.size(0), -1) 
 
    x = self.Linear_layer(x)
    
    return x

最后,构建一个对象,并加载resnet预训练的参数就可以啦~

resnet = models.resnet50(pretrained=True)
model = Net(resnet)

以上这篇pytorch 更改预训练模型网络结构的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

py2exe 编译ico图标的代码

复制代码 代码如下: #setup.py from distutils.core import setup import py2exe setup( # targets to build...

pytorch1.0中torch.nn.Conv2d用法详解

Conv2d的简单使用 torch 包 nn 中 Conv2d 的用法与 tensorflow 中类似,但不完全一样。 在 torch 中,Conv2d 有几个基本的参数,分别是 in_...

python实现NB-IoT模块远程控制

本来想尝试下如果不使用运营商网络应用平台情况下,只是在服务商服务器上是否可以实现对终端完全控制,如果这样可行,那么物联网应用服务端更有灵活性。实际情况下,很难实现和运营商网络对等的处理,...

python实现带错误处理功能的远程文件读取方法

本文实例讲述了python实现带错误处理功能的远程文件读取方法。分享给大家供大家参考。具体如下: import socket, sys, time host = sys.argv[1...

Python实现批量转换文件编码的方法

本文实例讲述了Python实现批量转换文件编码的方法。分享给大家供大家参考。具体如下: 这里将某个目录下的所有文件从一种编码转换为另一种编码,然后保存 import os impor...