pytorch 使用单个GPU与多个GPU进行训练与测试的方法

yipeiwu_com5年前Python基础

如下所示:

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")#第一行代码
model.to(device)#第二行代码

首先是上面两行代码放在读取数据之前。

mytensor = my_tensor.to(device)#第三行代码

然后是第三行代码。这句代码的意思是将所有最开始读取数据时的tersor变量copy一份到device所指定的GPU上去,之后的运算都在GPU上进行。需要注意的是这句话并不像前面的两行代码一样只需要写一遍,第三行代码需要写的次数就等于需要保存到GPU上的tensor变量个数;一般情况下这些tensor变量都是最开始读取数据时的tensor变量,后面所衍生的变量自然也都在GPU之上。

以上是使用单个GPU的情况。当你拥有多个GPU时,要想使用多个GPU进行训练和测试,需要在第一二行代码之间插上下面这样一个判断语句,其余的写法也都是一样的。

if torch.cuda.device_count() > 1:
 model = nn.DataParallel(model)

使用多个GPU的原理就是通过上面这句代码将model在每个GPU上分别保存一份,然后对model的输入tensor进行自动的分割,每个GPU计算tensor的一部分,这样就能实现计算量的平均分配。在每个model计算完成之后,DataParallel将这些结果进行收集和融合,之后再将结果返回。

以上这篇pytorch 使用单个GPU与多个GPU进行训练与测试的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

利用ctypes获取numpy数组的指针方法

如下所示: import numpy as np from ctypes import * a = np.asarray(range(16), dtype=np.int32).re...

opencv与numpy的图像基本操作

opencv与numpy的图像基本操作

1. 像素基本操作 1.1 读取、修改像素 可以通过[行,列]坐标来访问像素点数据,对于多通道数据,返回一个数组,包含所有通道的值,对于单通道数据(如gray),返回指定坐标的值,也可...

Django小白教程之Django用户注册与登录

Django小白教程之Django用户注册与登录

 Django 是由 Python 开发的一个免费的开源网站框架,可以用于快速搭建高性能,优雅的网站! 学习django学得超级吃力,最近弄个最简单的用户登录与注册界面都是那么...

Python Deque 模块使用详解

创建Deque序列: from collections import deque d = deque() Deque提供了类似list的操作方法: d = deque(...

Python3获取拉勾网招聘信息的方法实例

Python3获取拉勾网招聘信息的方法实例

前言 为了了解跟python数据分析有关行业的信息,大概地了解一下对这个行业的要求以及薪资状况,我决定从网上获取信息并进行分析。既然想要分析就必须要有数据,于是我选择了拉勾,冒着危险深入...