pytorch 使用单个GPU与多个GPU进行训练与测试的方法

yipeiwu_com6年前Python基础

如下所示:

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")#第一行代码
model.to(device)#第二行代码

首先是上面两行代码放在读取数据之前。

mytensor = my_tensor.to(device)#第三行代码

然后是第三行代码。这句代码的意思是将所有最开始读取数据时的tersor变量copy一份到device所指定的GPU上去,之后的运算都在GPU上进行。需要注意的是这句话并不像前面的两行代码一样只需要写一遍,第三行代码需要写的次数就等于需要保存到GPU上的tensor变量个数;一般情况下这些tensor变量都是最开始读取数据时的tensor变量,后面所衍生的变量自然也都在GPU之上。

以上是使用单个GPU的情况。当你拥有多个GPU时,要想使用多个GPU进行训练和测试,需要在第一二行代码之间插上下面这样一个判断语句,其余的写法也都是一样的。

if torch.cuda.device_count() > 1:
 model = nn.DataParallel(model)

使用多个GPU的原理就是通过上面这句代码将model在每个GPU上分别保存一份,然后对model的输入tensor进行自动的分割,每个GPU计算tensor的一部分,这样就能实现计算量的平均分配。在每个model计算完成之后,DataParallel将这些结果进行收集和融合,之后再将结果返回。

以上这篇pytorch 使用单个GPU与多个GPU进行训练与测试的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Django基础知识与基本应用入门教程

Django基础知识与基本应用入门教程

本文实例讲述了Django基础知识与基本应用。分享给大家供大家参考,具体如下: MVC模式和MTV模式 MVC model view controller MTV model templ...

python中异常捕获方法详解

在Python中处理异常使用的是try-except代码块,try-except代码块放入让python执行的操作,同时告诉python程序如果发生了异常该怎么办,try-except这...

详解python中的装饰器

在了解装饰器之前,我们需要知道什么闭包是什么鬼! 闭包:在一个函数内定义了一个函数f,并且这个函数f引用外部变量,在把这个函数f当做返回值返回。 上述说了闭包的三个条件: 1 函数内定义...

numpy matrix和array的乘和加实例

1. 对于数组array 乘 就是对应位置的元素相乘: X1 = np.array([[1,2], [3, 4]]) X2 = X1 print X2*X1 [[ 1 4] [ 9...

python 专题九 Mysql数据库编程基础知识

python 专题九 Mysql数据库编程基础知识

在Python网络爬虫中,通常是通过TXT纯文本方式存储,其实也是可以存储在数据库中的;同时在WAMP(Windows、Apache、MySQL、PHP或Python)开发网站中,也可以...