pytorch 使用单个GPU与多个GPU进行训练与测试的方法

yipeiwu_com6年前Python基础

如下所示:

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")#第一行代码
model.to(device)#第二行代码

首先是上面两行代码放在读取数据之前。

mytensor = my_tensor.to(device)#第三行代码

然后是第三行代码。这句代码的意思是将所有最开始读取数据时的tersor变量copy一份到device所指定的GPU上去,之后的运算都在GPU上进行。需要注意的是这句话并不像前面的两行代码一样只需要写一遍,第三行代码需要写的次数就等于需要保存到GPU上的tensor变量个数;一般情况下这些tensor变量都是最开始读取数据时的tensor变量,后面所衍生的变量自然也都在GPU之上。

以上是使用单个GPU的情况。当你拥有多个GPU时,要想使用多个GPU进行训练和测试,需要在第一二行代码之间插上下面这样一个判断语句,其余的写法也都是一样的。

if torch.cuda.device_count() > 1:
 model = nn.DataParallel(model)

使用多个GPU的原理就是通过上面这句代码将model在每个GPU上分别保存一份,然后对model的输入tensor进行自动的分割,每个GPU计算tensor的一部分,这样就能实现计算量的平均分配。在每个model计算完成之后,DataParallel将这些结果进行收集和融合,之后再将结果返回。

以上这篇pytorch 使用单个GPU与多个GPU进行训练与测试的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python format 格式化输出方法

0、前言 在python2.7及以上的版本,str.format()的方式为格式化提供了非常大的便利。与之前的%型格式化字符串相比,他显得更为方便与优越。下面我们就来看看format的具...

Python 图像对比度增强的几种方法(小结)

Python 图像对比度增强的几种方法(小结)

图像处理工具——灰度直方图 灰度直方图时图像灰度级的函数,用来描述每个灰度级在图像矩阵中的像素个数或者占有率。 例子:矩阵 图片来自网络,侵删! 上面图片的灰度直方图 p...

python实现图像检索的三种(直方图/OpenCV/哈希法)

python实现图像检索的三种(直方图/OpenCV/哈希法)

简介: 本文介绍了图像检索的三种实现方式,均用python完成,其中前两种基于直方图比较,哈希法基于像素分布。 检索方式是:提前导入图片库作为检索范围,给出待检索的图片,将其与图片库...

Pyhthon中使用compileall模块编译源文件为pyc文件

有的时候我们需要把项目中.py的python所有源文件编译成.pyc文件,只保留.pyc文件然后发布给别人(虽然说可以反编译,但也算是一种保护把). 这个时候就可以使用compileal...

python实现弹窗祝福效果

python实现弹窗祝福效果

前言 猪年除夕之夜在亲人群抢红包心血来潮,想用python做比较好玩的新年祝福给亲人们乐呵乐呵。奈何初学Python,底子比较薄,通过查阅相关博客,在一位网友的基础代码之下添加改进,使得...