pytorch 使用单个GPU与多个GPU进行训练与测试的方法

yipeiwu_com6年前Python基础

如下所示:

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")#第一行代码
model.to(device)#第二行代码

首先是上面两行代码放在读取数据之前。

mytensor = my_tensor.to(device)#第三行代码

然后是第三行代码。这句代码的意思是将所有最开始读取数据时的tersor变量copy一份到device所指定的GPU上去,之后的运算都在GPU上进行。需要注意的是这句话并不像前面的两行代码一样只需要写一遍,第三行代码需要写的次数就等于需要保存到GPU上的tensor变量个数;一般情况下这些tensor变量都是最开始读取数据时的tensor变量,后面所衍生的变量自然也都在GPU之上。

以上是使用单个GPU的情况。当你拥有多个GPU时,要想使用多个GPU进行训练和测试,需要在第一二行代码之间插上下面这样一个判断语句,其余的写法也都是一样的。

if torch.cuda.device_count() > 1:
 model = nn.DataParallel(model)

使用多个GPU的原理就是通过上面这句代码将model在每个GPU上分别保存一份,然后对model的输入tensor进行自动的分割,每个GPU计算tensor的一部分,这样就能实现计算量的平均分配。在每个model计算完成之后,DataParallel将这些结果进行收集和融合,之后再将结果返回。

以上这篇pytorch 使用单个GPU与多个GPU进行训练与测试的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python用zip函数同时遍历多个迭代器示例详解

前言 本文主要介绍的是Python如何使用zip函数同时遍历多个迭代器,文中的版本为Python3,zip函数是Python内置的函数。下面话不多说,来看详细的内容。 应用举例...

解决pandas使用read_csv()读取文件遇到的问题

如下: 数据文件: 上海机场 (sh600009) 24.11 3.58...

详解Python中的__new__、__init__、__call__三个特殊方法

__new__: 对象的创建,是一个静态方法,第一个参数是cls。(想想也是,不可能是self,对象还没创建,哪来的self) __init__ : 对象的初始化, 是一个实例方法,第一...

python 实现判断ip连通性的方法总结

python 以下是个人学习 python 研究判断ip连通性方法的集合。 缺点可能有办法解决,如有错误,欢迎矫正。 方法一 import os return1=os.system(...

Python collections模块实例讲解

collections模块基本介绍 我们都知道,Python拥有一些内置的数据类型,比如str, int, list, tuple, dict等, collections模块在这些内置数...