pytorch 使用单个GPU与多个GPU进行训练与测试的方法

yipeiwu_com6年前Python基础

如下所示:

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")#第一行代码
model.to(device)#第二行代码

首先是上面两行代码放在读取数据之前。

mytensor = my_tensor.to(device)#第三行代码

然后是第三行代码。这句代码的意思是将所有最开始读取数据时的tersor变量copy一份到device所指定的GPU上去,之后的运算都在GPU上进行。需要注意的是这句话并不像前面的两行代码一样只需要写一遍,第三行代码需要写的次数就等于需要保存到GPU上的tensor变量个数;一般情况下这些tensor变量都是最开始读取数据时的tensor变量,后面所衍生的变量自然也都在GPU之上。

以上是使用单个GPU的情况。当你拥有多个GPU时,要想使用多个GPU进行训练和测试,需要在第一二行代码之间插上下面这样一个判断语句,其余的写法也都是一样的。

if torch.cuda.device_count() > 1:
 model = nn.DataParallel(model)

使用多个GPU的原理就是通过上面这句代码将model在每个GPU上分别保存一份,然后对model的输入tensor进行自动的分割,每个GPU计算tensor的一部分,这样就能实现计算量的平均分配。在每个model计算完成之后,DataParallel将这些结果进行收集和融合,之后再将结果返回。

以上这篇pytorch 使用单个GPU与多个GPU进行训练与测试的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

matplotlib 纵坐标轴显示数据值的实例

实例如下所示: import matplotlib as mt import numpy as np y=[7,0,0,0,0,0,1,25,98,333,471,0,322,42...

python读取浮点数和读取文本文件示例

从文本文件中读入浮点数据,是最常见的任务之一,python没有scanf这样的输入函数,但我们可以利用正规表达式从读入的字符串中提取出浮点数 复制代码 代码如下:import refp...

Python+OpenCV让电脑帮你玩微信跳一跳

Python+OpenCV让电脑帮你玩微信跳一跳

前言 最近微信小游戏跳一跳大热,自己也是中毒颇久,无奈手残最高分只拿到200分。无意间看到教你用Python来玩微信跳一跳一文,在电脑上利用adb驱动工具操作手机,详细的介绍以及如何安装...

详解python做UI界面的方法

详解python做UI界面的方法

一直以来都是用python脚本,执行的时候就是在终端直接命令执行,或者直接输入代码执行,最近为了方便他人使用,想做个界面,可以通过里面的控件菜单直接点击执行程序功能。 在文件夹中创建一...

Python 实现数据结构-循环队列的操作方法

今天我们来到了循环队列这一节,之前的文章中,我介绍过了用python自带的列表来实现队列,这是最简单的实现方法。 但是,我们都知道,在列表中删除第一个元素和删除最后一个元素花费的时间代价...