解决pytorch GPU 计算过程中出现内存耗尽的问题

yipeiwu_com5年前Python基础

Pytorch GPU运算过程中会出现:“cuda runtime error(2): out of memory”这样的错误。通常,这种错误是由于在循环中使用全局变量当做累加器,且累加梯度信息的缘故,用官方的说法就是:"accumulate history across your training loop"。在默认情况下,开启梯度计算的Tensor变量是会在GPU保持他的历史数据的,所以在编程或者调试过程中应该尽力避免在循环中累加梯度信息。

下面举个栗子:

上代码:

total_loss=0
for i in range(10000):
  optimizer.zero_grad()
  output=model(input)
  loss=criterion(output)
  loss.backward()
  optimizer.step()
  total_loss+=loss
  #这里total_loss是跨越循环的变量,起着累加的作用,
  #loss变量是带有梯度的tensor,会保持历史梯度信息,在循环过程中会不断积累梯度信息到tota_loss,占用内存

以上例子的修正方法是在循环中的最后一句修改为:total_loss+=float(loss),利用类型变换解除梯度信息,这样,多次累加不会累加梯度信息。

局部变量逗留导致内存泄露

局部变量通常在变量作用域之外会被Python自动销毁,在作用域之内,不需要的临时变量可以使用del x来销毁。

在设计Linear Layers 的时候,尽量让其规模小点

对于nn.Linear(m,n)这样规模的线性函数,他的空间规模为O(mn),除此规模的空间来容纳参数意外,还需要同样规模的空间来存储梯度,由此很容易造成GPU空间溢出。

相关的进程管理bash cmd

nvidia-smi监控GPU,

watch -n 1 nvidia-smi实时监控GPU,

watch -n 1 lscpu实时监控CPU,

ps -elf进程查看,

ps -elf | grep python查看Python子进程,

kill -9 [PID]杀死进程PID。

Referance:

Pytorch documentations

以上这篇解决pytorch GPU 计算过程中出现内存耗尽的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python实现自动发送邮件发送多人、群发、多附件的示例

python实现自动发送邮件发送多人、群发、多附件的示例

1、最近公司实现部分数据统计、分析的报表进行每天定时发送到相关人员的邮箱之中的配置代码被人为删除了,需要重新恢复该功能,由于原先是在linux上使用shell配置发送,实在是太繁琐,所以...

Python中将dataframe转换为字典的实例

有时候,在Python中需要将dataframe类型转换为字典类型,下面的方法帮助我们解决这一问题。 任务代码。 # encoding: utf-8 import pandas a...

Python PyInstaller安装和使用教程详解

Pyinstaller这个库是我用pip下载的第一个模块。接下来通过本文给大家分享Python PyInstaller安装和使用教程,一起看看吧。 安装 PyInstalle Pytho...

在Python中使用判断语句和循环的教程

条件判断 计算机之所以能做很多自动化的任务,因为它可以自己做条件判断。 比如,输入用户年龄,根据年龄打印不同的内容,在Python程序中,用if语句实现: age = 20 if a...

python判断windows隐藏文件的方法

python判断windows隐藏文件的方法

1. 通过windows attrib 命令获取文件隐藏属性复制代码 代码如下:Syntax      ATTRIB [ + attri...