解决pytorch GPU 计算过程中出现内存耗尽的问题

yipeiwu_com5年前Python基础

Pytorch GPU运算过程中会出现:“cuda runtime error(2): out of memory”这样的错误。通常,这种错误是由于在循环中使用全局变量当做累加器,且累加梯度信息的缘故,用官方的说法就是:"accumulate history across your training loop"。在默认情况下,开启梯度计算的Tensor变量是会在GPU保持他的历史数据的,所以在编程或者调试过程中应该尽力避免在循环中累加梯度信息。

下面举个栗子:

上代码:

total_loss=0
for i in range(10000):
  optimizer.zero_grad()
  output=model(input)
  loss=criterion(output)
  loss.backward()
  optimizer.step()
  total_loss+=loss
  #这里total_loss是跨越循环的变量,起着累加的作用,
  #loss变量是带有梯度的tensor,会保持历史梯度信息,在循环过程中会不断积累梯度信息到tota_loss,占用内存

以上例子的修正方法是在循环中的最后一句修改为:total_loss+=float(loss),利用类型变换解除梯度信息,这样,多次累加不会累加梯度信息。

局部变量逗留导致内存泄露

局部变量通常在变量作用域之外会被Python自动销毁,在作用域之内,不需要的临时变量可以使用del x来销毁。

在设计Linear Layers 的时候,尽量让其规模小点

对于nn.Linear(m,n)这样规模的线性函数,他的空间规模为O(mn),除此规模的空间来容纳参数意外,还需要同样规模的空间来存储梯度,由此很容易造成GPU空间溢出。

相关的进程管理bash cmd

nvidia-smi监控GPU,

watch -n 1 nvidia-smi实时监控GPU,

watch -n 1 lscpu实时监控CPU,

ps -elf进程查看,

ps -elf | grep python查看Python子进程,

kill -9 [PID]杀死进程PID。

Referance:

Pytorch documentations

以上这篇解决pytorch GPU 计算过程中出现内存耗尽的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

老生常谈python的私有公有属性(必看篇)

python中,类内方法外的变量叫属性,类内方法内的变量叫字段。他们的私有公有访问方法类似。 class C: __name="私有属性" def func(self):...

对Python进行数据分析_关于Package的安装问题

对Python进行数据分析_关于Package的安装问题

一、为什么要使用Python进行数据分析? python拥有一个巨大的活跃的科学计算社区,拥有不断改良的库,能够轻松的集成C,C++,Fortran代码(Cython项目),可以同时用于...

python中pycurl库的用法实例

本文实例讲述了python中pycurl库的用法,分享给大家供大家参考。 该实例代码实现从指定网址读取网页,主要是pycurl库的使用。 具体实现方法如下: #定义一个类 class...

pycharm 使用心得(七)一些实用功能介绍

pycharm 使用心得(七)一些实用功能介绍

实时比较 PyCharm 对一个文件里你做的改动保持实时的跟踪,通过在编辑器的左侧栏显示一个蓝色的标记。这一点非常方便,我之前一直是在Eclipse里面用命令“Compare again...

Python itertools模块详解

这货很强大, 必须掌握 文档 链接 http://docs.python.org/2/library/itertools.html pymotw 链接 http://pymotw.com...