Pytorch 抽取vgg各层并进行定制化处理的方法

yipeiwu_com5年前Python基础

工作中有时候需要对vgg进行定制化处理,比如有些时候需要借助于vgg的层结构,但是需要使用的是2 channels输入,等等需求,这时候可以使用vgg的原始结构用class重写一遍,但是这样的方式比较慢,并且容易出错,下面给出一种比较简单的方式

def define_vgg(vgg,input_channels,endlayer,use_maxpool=False): 
  vgg_ad = copy.deepcopy(vgg)
  model = nn.Sequential()
  i = 0
  for layer in list(vgg_ad.features):
    if i > endlayer:
      break
    if isinstance(layer, nn.Conv2d) and i is 0:
      name = "conv_" + str(i)
      layer = nn.Conv2d(input_channels,
               layer.out_channels,
               layer.kernel_size,
               stride = layer.stride,
               padding=layer.padding)
      model.add_module(name, layer)
    if isinstance(layer, nn.Conv2d):
      name = "conv_" + str(i)
      model.add_module(name, layer)
 
    if isinstance(layer, nn.ReLU):
      name = "leakyrelu_" + str(i)
      layer = nn.LeakyReLU(inplace=True) 
      model.add_module(name, layer)
 
    if isinstance(layer, nn.MaxPool2d):
      name = "pool_" + str(i)
      if use_maxpool:
        model.add_module(name, layer)
      else:
        avgpool = nn.AvgPool2d(kernel_size=layer.kernel_size, stride=layer.stride, padding=layer.padding)
        model.add_module(name, avgpool)
    i += 1
  return model

函数输入项中的vgg 是直接使用的import torchvision.models.vgg16 传入的是vgg16 非预训练版本。end_layer 是需要提取的层数,这里使用了vgg.features 是指仅仅在vgg.features 上进行层的提取;也可以根据定制在classifier上进行提取。

下面是我的一个提取前7层的示例,可以使用pyCharm evaluate 上面函数返回的model,可以看到这个示例的情况,这里我的定制条件是输入通道为2 ,需要提取前7层,并且将ReLu更换为LeakyRelu。

Sequential(
 (conv_0): Conv2d(2, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (leakyrelu_1): LeakyReLU(negative_slope=0.01, inplace)
 (conv_2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (leakyrelu_3): LeakyReLU(negative_slope=0.01, inplace)
 (pool_4): AvgPool2d(kernel_size=2, stride=2, padding=0)
 (conv_5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (leakyrelu_6): LeakyReLU(negative_slope=0.01, inplace)
 (conv_7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)

以上这篇Pytorch 抽取vgg各层并进行定制化处理的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python使用zip将list转为json的方法

zip()函数将可迭代对象作为参数,并打包成元组,返回的是一个个zip对象,可以使用list或dict转换返回结果,使用*zip可以将打包的对象分解成列表 >>>...

Python绘制正余弦函数图像的方法

Python绘制正余弦函数图像的方法

今天打算通过绘制正弦和余弦函数,从默认的设置开始,一步一步地调整改进,让它变得好看,变成我们初高中学习过的图象那样。通过这个过程来学习如何进行对图表的一些元素的进行调整。 01. 简单绘...

python对日志进行处理的实例代码

平时做数据处理基本离不了日志记录功能。每次都配置一堆挺烦人,索性封装个模块,这里记录一下,与大家共享。 说明 本日志模块目前只有一个方法getLogger,其他配置项通过参数传递,包括日...

基于python的selenium两种文件上传操作实现详解

基于python的selenium两种文件上传操作实现详解

方法一、input标签上传 如果是input标签,可以直接输入路径,那么可以直接调用send_keys输入路径,这里不做过多赘述,前文有相关操作方法。 方法二、非input标签上传 这种...

详解Python中映射类型(字典)操作符的概念和使用

映射类型操作符 (1)标准类型操作符         字典可以和所有的标准类型操作符一起工作,但却不支持像拼接(co...