Pytorch 抽取vgg各层并进行定制化处理的方法

yipeiwu_com6年前Python基础

工作中有时候需要对vgg进行定制化处理,比如有些时候需要借助于vgg的层结构,但是需要使用的是2 channels输入,等等需求,这时候可以使用vgg的原始结构用class重写一遍,但是这样的方式比较慢,并且容易出错,下面给出一种比较简单的方式

def define_vgg(vgg,input_channels,endlayer,use_maxpool=False): 
  vgg_ad = copy.deepcopy(vgg)
  model = nn.Sequential()
  i = 0
  for layer in list(vgg_ad.features):
    if i > endlayer:
      break
    if isinstance(layer, nn.Conv2d) and i is 0:
      name = "conv_" + str(i)
      layer = nn.Conv2d(input_channels,
               layer.out_channels,
               layer.kernel_size,
               stride = layer.stride,
               padding=layer.padding)
      model.add_module(name, layer)
    if isinstance(layer, nn.Conv2d):
      name = "conv_" + str(i)
      model.add_module(name, layer)
 
    if isinstance(layer, nn.ReLU):
      name = "leakyrelu_" + str(i)
      layer = nn.LeakyReLU(inplace=True) 
      model.add_module(name, layer)
 
    if isinstance(layer, nn.MaxPool2d):
      name = "pool_" + str(i)
      if use_maxpool:
        model.add_module(name, layer)
      else:
        avgpool = nn.AvgPool2d(kernel_size=layer.kernel_size, stride=layer.stride, padding=layer.padding)
        model.add_module(name, avgpool)
    i += 1
  return model

函数输入项中的vgg 是直接使用的import torchvision.models.vgg16 传入的是vgg16 非预训练版本。end_layer 是需要提取的层数,这里使用了vgg.features 是指仅仅在vgg.features 上进行层的提取;也可以根据定制在classifier上进行提取。

下面是我的一个提取前7层的示例,可以使用pyCharm evaluate 上面函数返回的model,可以看到这个示例的情况,这里我的定制条件是输入通道为2 ,需要提取前7层,并且将ReLu更换为LeakyRelu。

Sequential(
 (conv_0): Conv2d(2, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (leakyrelu_1): LeakyReLU(negative_slope=0.01, inplace)
 (conv_2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (leakyrelu_3): LeakyReLU(negative_slope=0.01, inplace)
 (pool_4): AvgPool2d(kernel_size=2, stride=2, padding=0)
 (conv_5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 (leakyrelu_6): LeakyReLU(negative_slope=0.01, inplace)
 (conv_7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)

以上这篇Pytorch 抽取vgg各层并进行定制化处理的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

PYQT5开启多个线程和窗口,多线程与多窗口的交互实例

PYQT5开启多个线程和窗口,多线程与多窗口的交互实例

每点击一次按钮,弹出一个对话框(子窗口),同时开启一个子线程来执行任务并更新对话框内容,关闭对话框则关闭对应子线程 1. 建立一个简单的主界面和一个自定义对话框 from PyQt...

Python将多个excel表格合并为一个表格

Python将多个excel表格合并为一个表格

生活中经常会碰到多个excel表格汇总成一个表格的情况,比如你发放了一份表格让班级所有同学填写,而你负责将大家的结果合并成一个。诸如此类的问题有很多。除了人工将所有表格的内容一个一个复制...

在Python的Django框架中simple-todo工具的简单使用

缘起 simple-todo最早是web.py一个中文教程的例子。后来Uliweb的作者limodou 认为这个教程很不错,于是有了Uliweb版的simple-todo。接着又有了Bo...

Python中的面向对象编程详解(上)

创建类 Python 类使用 class 关键字来创建。简单的类的声明可以是关键字后紧跟类名: 复制代码 代码如下: class ClassName(bases):  &nbs...

Python基于回溯法子集树模板解决0-1背包问题实例

Python基于回溯法子集树模板解决0-1背包问题实例

本文实例讲述了Python基于回溯法子集树模板解决0-1背包问题。分享给大家供大家参考,具体如下: 问题 给定N个物品和一个背包。物品i的重量是Wi,其价值位Vi ,背包的容量为C。问应...