PyTorch中常用的激活函数的方法示例

yipeiwu_com6年前Python基础

神经网络只是由两个或多个线性网络层叠加,并不能学到新的东西,简单地堆叠网络层,不经过非线性激活函数激活,学到的仍然是线性关系。

但是加入激活函数可以学到非线性的关系,就具有更强的能力去进行特征提取。

构造数据

import torch
import torch.nn.functional as F
from torch.autograd import Variable

import matplotlib.pyplot as plt

x = torch.linspace(-5, 5, 200)  # 构造一段连续的数据
x = Variable(x)	 # 转换成张量
x_np = x.data.numpy()	# 换成 numpy array, 出图时用

Relu

表达式:


代码:

y_relu = F.relu(x).data.numpy()
plt.plot(x_np, y_relu, c='red', label='relu')
plt.ylim((-1, 5))
plt.legend(loc='best')

plt.show()

形状如图:

在这里插入图片描述

Sigmoid

表达式:

代码:

y_sigmoid = F.sigmoid(x).data.numpy()
plt.plot(x_np, y_sigmoid, c='red', label='sigmoid')
plt.ylim((-0.2, 1.2))
plt.legend(loc='best')

plt.show()

形状如图:

在这里插入图片描述

Tanh

表达式:

代码:

y_tanh = F.tanh(x).data.numpy()
plt.plot(x_np, y_tanh, c='red', label='tanh')
plt.ylim((-1.2, 1.2))
plt.legend(loc='best')

plt.show()

形状如图:

在这里插入图片描述

Softplus

表达式:


代码:

y_softplus = F.softplus(x).data.numpy()
plt.plot(x_np, y_softplus, c='red', label='softplus')
plt.ylim((-0.2, 6))
plt.legend(loc='best')

plt.show()

形状如图:

在这里插入图片描述

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python+django快速实现文件上传

python+django快速实现文件上传

对于web开来说,用户登陆、注册、文件上传等是最基础的功能,针对不同的web框架,相关的文章非常多,但搜索之后发现大多都不具有完整性,对于想学习web开发的新手来说就没办法一步一步的操作...

Python Selenium参数配置方法解析

这篇文章主要介绍了Python Selenium参数配置方法解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 selenium.获取...

python实现本地批量ping多个IP的方法示例

本文主要利用python的相关模块进行批量ping ,测试IP连通性。 下面看具体代码(python3): ''' 遇到问题没人解答?小编创建了一个Python学习交流QQ群:8...

Python数据可视化正态分布简单分析及实现代码

Python数据可视化正态分布简单分析及实现代码

Python说来简单也简单,但是也不简单,尤其是再跟高数结合起来的时候。。。 正态分布(Normaldistribution),也称“常态分布”,又名高斯分布(Gaussiandistr...

Python3视频转字符动画的实例代码

Python3视频转字符动画,具体代码如下所示: # -*- coding:utf-8 -*- import json import os import subprocess fr...