PyTorch中常用的激活函数的方法示例

yipeiwu_com6年前Python基础

神经网络只是由两个或多个线性网络层叠加,并不能学到新的东西,简单地堆叠网络层,不经过非线性激活函数激活,学到的仍然是线性关系。

但是加入激活函数可以学到非线性的关系,就具有更强的能力去进行特征提取。

构造数据

import torch
import torch.nn.functional as F
from torch.autograd import Variable

import matplotlib.pyplot as plt

x = torch.linspace(-5, 5, 200)  # 构造一段连续的数据
x = Variable(x)	 # 转换成张量
x_np = x.data.numpy()	# 换成 numpy array, 出图时用

Relu

表达式:


代码:

y_relu = F.relu(x).data.numpy()
plt.plot(x_np, y_relu, c='red', label='relu')
plt.ylim((-1, 5))
plt.legend(loc='best')

plt.show()

形状如图:

在这里插入图片描述

Sigmoid

表达式:

代码:

y_sigmoid = F.sigmoid(x).data.numpy()
plt.plot(x_np, y_sigmoid, c='red', label='sigmoid')
plt.ylim((-0.2, 1.2))
plt.legend(loc='best')

plt.show()

形状如图:

在这里插入图片描述

Tanh

表达式:

代码:

y_tanh = F.tanh(x).data.numpy()
plt.plot(x_np, y_tanh, c='red', label='tanh')
plt.ylim((-1.2, 1.2))
plt.legend(loc='best')

plt.show()

形状如图:

在这里插入图片描述

Softplus

表达式:


代码:

y_softplus = F.softplus(x).data.numpy()
plt.plot(x_np, y_softplus, c='red', label='softplus')
plt.ylim((-0.2, 6))
plt.legend(loc='best')

plt.show()

形状如图:

在这里插入图片描述

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

实例讲解Python中SocketServer模块处理网络请求的用法

SocketServer创建一个网络服务框架。它定义了类来处理TCP,UDP, UNIX streams 和UNIX datagrams上的同步网络请求。 一、Server Types...

用Python删除本地目录下某一时间点之前创建的所有文件的实例

因为工作原因,需要定期清理某个文件夹下面创建时间超过1年的所有文件,所以今天集中学习了一下Python对于本地文件及文件夹的操作。网上 这篇文章 简明扼要地整理出最常见的os方法,抄袭如...

python使用MySQLdb访问mysql数据库的方法

本文实例讲述了python使用MySQLdb访问mysql数据库的方法。分享给大家供大家参考。具体如下: #!/usr/bin/python import MySQLdb def d...

Django Web开发中django-debug-toolbar的配置以及使用

Django Web开发中django-debug-toolbar的配置以及使用

前言 django,web开发中,用django-debug-toolbar来调试请求的接口,无疑是完美至极。 可能本人,见识博浅,才说完美至极, 大神,表喷,抱拳了。 django_d...

Python3.5常见内置方法参数用法实例详解

本文实例讲述了Python3.5常见内置方法参数用法。分享给大家供大家参考,具体如下: Python的内置方法参数详解网站为:https://docs.python.org/3/libr...