Python数据可视化实现正态分布(高斯分布)

yipeiwu_com6年前Python基础

正态分布(Normal distribution)又成为高斯分布(Gaussian distribution)

若随机变量X服从一个数学期望为、标准方差为的高斯分布,记为:

则其概率密度函数为:

正态分布的期望值决定了其位置,其标准差决定了分布的幅度。因其曲线呈钟形,因此人们又经常称之为钟形曲线。我们通常所说的标准正态分布是的正态分布:

概率密度函数

 

 

代码实现:

# Python实现正态分布
  # 绘制正态分布概率密度函数
  u = 0  # 均值μ
  u01 = -2
  sig = math.sqrt(0.2) # 标准差δ
  sig01 = math.sqrt(1)
  sig02 = math.sqrt(5)
  sig_u01 = math.sqrt(0.5)
  x = np.linspace(u - 3*sig, u + 3*sig, 50)
  x_01 = np.linspace(u - 6 * sig, u + 6 * sig, 50)
  x_02 = np.linspace(u - 10 * sig, u + 10 * sig, 50)
  x_u01 = np.linspace(u - 10 * sig, u + 1 * sig, 50)
  y_sig = np.exp(-(x - u) ** 2 /(2* sig **2))/(math.sqrt(2*math.pi)*sig)
  y_sig01 = np.exp(-(x_01 - u) ** 2 /(2* sig01 **2))/(math.sqrt(2*math.pi)*sig01)
  y_sig02 = np.exp(-(x_02 - u) ** 2 / (2 * sig02 ** 2)) / (math.sqrt(2 * math.pi) * sig02)
  y_sig_u01 = np.exp(-(x_u01 - u01) ** 2 / (2 * sig_u01 ** 2)) / (math.sqrt(2 * math.pi) * sig_u01)
  plt.plot(x, y_sig, "r-", linewidth=2)
  plt.plot(x_01, y_sig01, "g-", linewidth=2)
  plt.plot(x_02, y_sig02, "b-", linewidth=2)
  plt.plot(x_u01, y_sig_u01, "m-", linewidth=2)
  # plt.plot(x, y, 'r-', x, y, 'go', linewidth=2,markersize=8)
  plt.grid(True)
  plt.show()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python生成不重复随机值的方法

本文实例讲述了Python生成不重复随机值的方法。分享给大家供大家参考。具体分析如下: 这里从一列表中,生成不重复的随机值 算法实现如下: import random total =...

Python获取指定字符前面的所有字符方法

在用C和python编程时遇到的一个问题是: 用网口发送过来1k数据,数据格式是json,但是发送时不知道需要的大小,因为不同任务大小不一样,所以统一发送1024字节,统一接收1024了...

python wxpython 实现界面跳转功能

python wxpython 实现界面跳转功能

用wxpython设计界面时可能会出现界面嵌套的情况 这样就需要进行界面的跳转 但是貌似wxpython没提供界面跳转的方式(也可能是我菜。。。) 所以就需要借助threading模块...

深入理解NumPy简明教程---数组3(组合)

前两篇文章对NumPy数组做了基本的介绍,本篇文章对NumPy数组进行较深入的探讨。首先介绍自定义类型的数组,接着数组的组合,最后介绍数组复制方面的问题。 自定义结构数组 通过NumP...

Python读取YUV文件,并显示的方法

Python读取YUV格式文件,并使用opencv显示的方法 opencv可以读取的图片类型比较多,但大多是比较常见的类型,比如".jpg"和".png",但它不能直接读取YUV格式的文...