Python数据可视化实现正态分布(高斯分布)

yipeiwu_com6年前Python基础

正态分布(Normal distribution)又成为高斯分布(Gaussian distribution)

若随机变量X服从一个数学期望为、标准方差为的高斯分布,记为:

则其概率密度函数为:

正态分布的期望值决定了其位置,其标准差决定了分布的幅度。因其曲线呈钟形,因此人们又经常称之为钟形曲线。我们通常所说的标准正态分布是的正态分布:

概率密度函数

 

 

代码实现:

# Python实现正态分布
  # 绘制正态分布概率密度函数
  u = 0  # 均值μ
  u01 = -2
  sig = math.sqrt(0.2) # 标准差δ
  sig01 = math.sqrt(1)
  sig02 = math.sqrt(5)
  sig_u01 = math.sqrt(0.5)
  x = np.linspace(u - 3*sig, u + 3*sig, 50)
  x_01 = np.linspace(u - 6 * sig, u + 6 * sig, 50)
  x_02 = np.linspace(u - 10 * sig, u + 10 * sig, 50)
  x_u01 = np.linspace(u - 10 * sig, u + 1 * sig, 50)
  y_sig = np.exp(-(x - u) ** 2 /(2* sig **2))/(math.sqrt(2*math.pi)*sig)
  y_sig01 = np.exp(-(x_01 - u) ** 2 /(2* sig01 **2))/(math.sqrt(2*math.pi)*sig01)
  y_sig02 = np.exp(-(x_02 - u) ** 2 / (2 * sig02 ** 2)) / (math.sqrt(2 * math.pi) * sig02)
  y_sig_u01 = np.exp(-(x_u01 - u01) ** 2 / (2 * sig_u01 ** 2)) / (math.sqrt(2 * math.pi) * sig_u01)
  plt.plot(x, y_sig, "r-", linewidth=2)
  plt.plot(x_01, y_sig01, "g-", linewidth=2)
  plt.plot(x_02, y_sig02, "b-", linewidth=2)
  plt.plot(x_u01, y_sig_u01, "m-", linewidth=2)
  # plt.plot(x, y, 'r-', x, y, 'go', linewidth=2,markersize=8)
  plt.grid(True)
  plt.show()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python搭建微信公众平台

python基于新浪sae开发的微信公众平台,实现功能: 输入段子---回复笑话 输入开源+文章---发送消息到开源中国 输入快递+订单号---查询快递信息 输入天气---查询南京最近...

Python找出9个连续的空闲端口

一、项目需求 安装某软件,配置时候需要填写空闲的端口。查看5个平台的某个端口是否被占用 5个平台为windows, linux, aix, hp, solaris 二、实现方案有两种 1...

Python+Wordpress制作小说站

我用Python和Wordpress建了一个小说站。 下面主要讲一讲搭建过程中所用的技术。主要分为以下几个部分: Wordpress主题的选取 小说内容的完善 站点的部署...

python的pygal模块绘制反正切函数图像方法

python的pygal模块绘制反正切函数图像方法

python是一个很有趣的语言,可以在命令行窗口运行。python中有很多功能强大的模块,这篇经验告诉你,如何使用python的pygal模块绘制反正切函数图像。 1.简介 pygal是...

python 消除 futureWarning问题的解决

在用LogisticRegression和svm的时候会出一堆futureWarning很碍眼于是 解决方法如下: from warnings import simplefilter...