在python Numpy中求向量和矩阵的范数实例

yipeiwu_com5年前Python基础

np.linalg.norm(求范数):linalg=linear(线性)+algebra(代数),norm则表示范数。

函数参数

x_norm=np.linalg.norm(x, ord=None, axis=None, keepdims=False)

①x: 表示矩阵(也可以是一维)

②ord:范数类型

向量的范数:

矩阵的范数:

ord=1:列和的最大值

ord=2:|λE-ATA|=0,求特征值,然后求最大特征值得算术平方根

ord=∞:行和的最大值

③axis:处理类型

axis=1表示按行向量处理,求多个行向量的范数

axis=0表示按列向量处理,求多个列向量的范数

axis=None表示矩阵范数。

④keepding:是否保持矩阵的二维特性

True表示保持矩阵的二维特性,False相反

向量范数:

1-范数: ,即向量元素绝对值之和,matlab调用函数norm(x, 1) 。

2-范数: ,Euclid范数(欧几里得范数,常用计算向量长度),即向量元素绝对值的平方和再开方,matlab调用函数norm(x, 2)。

∞-范数: ,即所有向量元素绝对值中的最大值,matlab调用函数norm(x, inf)。

-∞-范数: ,即所有向量元素绝对值中的最小值,matlab调用函数norm(x, -inf)。

p-范数: ,即向量元素绝对值的p次方和的1/p次幂,matlab调用函数norm(x, p)。

矩阵范数:

1-范数: , 列和范数,即所有矩阵列向量绝对值之和的最大值,matlab调用函数norm(A, 1)。

2-范数: ,谱范数,即A'A矩阵的最大特征值的开平方。matlab调用函数norm(x, 2)。

∞-范数: ,行和范数,即所有矩阵行向量绝对值之和的最大值,matlab调用函数norm(A, inf)。

F-范数: ,Frobenius范数,即矩阵元素绝对值的平方和再开平方,matlab调用函数norm(A, 'fro‘)。

import numpy as np

x1=np.array([1,5,6,3,-1])
x2=np.arange(12).reshape(3,4)
print x1,'\n',x2
print '向量2范数:'
print np.linalg.norm(x1)
print np.linalg.norm(x1,ord=2)
print '默认的矩阵范数:'
print np.linalg.norm(x2)
print '矩阵2范数:'
print np.linalg.norm(x2,ord=2)

经测试知:

np.linalg.norm(X),X为向量时,默认求向量2范数,即求向量元素绝对值的平方和再开方;

X为矩阵是,默认求的是F范数。矩阵的F范数即:矩阵的各个元素平方之和再开平方根,它通常也叫做矩阵的L2范数,它的有点在它是一个凸函数,可以求导求解,易于计算。

以上这篇在python Numpy中求向量和矩阵的范数实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python对列表中的各项进行关联详解

Python对列表中的各项进行关联详解

前言 我们在日常文本处理中,经常会将数据结构保存在列表中,如果将列表中的项进行关联,创建我们想要的字典结构,存取就会十分方便! 示例详解 比如说将List = ['Jerry 20 m...

Python中使用Boolean操作符做真值测试实例

在Python中,任何类型的对象都可以做真值测试,并且保证返回True或者False。 以下几种值(不论类型)在真值测试中返回False: 1.None 2.False 3.任何类型的数...

对Python获取屏幕截图的4种方法详解

Python获取电脑截图有多种方式,具体如下: PIL中的ImageGrab模块 windows API PyQt pyautogui PIL中的ImageGrab模块 impor...

flask利用flask-wtf验证上传的文件的方法

利用flask-wtf验证上传的文件 定义验证表单类的时候,对文件类型的字段,需要采用FileField这个类型,即wtforms.FileField。 验证器需要从flask...

利用TensorFlow训练简单的二分类神经网络模型的方法

利用TensorFlow训练简单的二分类神经网络模型的方法

利用TensorFlow实现《神经网络与机器学习》一书中4.7模式分类练习 具体问题是将如下图所示双月牙数据集分类。 使用到的工具: python3.5  &nbs...