关于Python中的向量相加和numpy中的向量相加效率对比

yipeiwu_com6年前Python基础

直接使用Python来实现向量的相加

# -*-coding:utf-8-*-
#向量相加
def pythonsum(n):
 a = range(n)
 b = range(n)
 c = []
 for i in range(len(a)):
  a[i] = i**2
  b[i] = i**3
  c.append(a[i]+b[i])
 return a,b,c

print pythonsum(4),type(pythonsum(4))
for arg in pythonsum(4):
 print arg

从这里这个输出结果可以看得出来,return多个值时,是以列表的形式返回的

([0, 1, 4, 9], [0, 1, 8, 27], [0, 2, 12, 36]) <type 'tuple'>
[0, 1, 4, 9]
[0, 1, 8, 27]
[0, 2, 12, 36]

使用numpy包实现两个向量的相加

def numpysum(n):
 a = np.arange(n) ** 2
 b = np.arange(n) ** 3
 c = a + b
 return a,b,c
(array([0, 1, 4, 9]), array([ 0, 1, 8, 27]), array([ 0, 2, 12, 36])) <type 'function'>
[0 1 4 9]
[ 0 1 8 27]
[ 0 2 12 36]

比较用Python实现两个向量相加和用numpy实现两个向量相加的情况

size = 1000
start = datetime.now()
c = pythonsum(size)
delta = datetime.now() - start
# print 'The last 2 elements of the sum',c[-2:]
print 'pythonSum elapsed time in microseconds',delta.microseconds

size = 1000
start1 = datetime.now()
c1 = numpysum(size)
delta1 = datetime.now() - start1
# print 'The last 2 elements of the sum',c1[-2:]
print 'numpySum elapsed time in microseconds',delta1.microseconds

从下面程序运行结果我们可以看到在处理向量是numpy要比Python计算高出不知道多少倍

pythonSum elapsed time in microseconds 1000
numpySum elapsed time in microseconds 0

以上这篇关于Python中的向量相加和numpy中的向量相加效率对比就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python中有趣在__call__函数

Python中有一个有趣的语法,只要定义类型的时候,实现__call__函数,这个类型就成为可调用的。 换句话说,我们可以把这个类型的对象当作函数来使用,相当于 重载了括号运算符。...

Python实现高效求解素数代码实例

素数是编程中经常需要用到的。 作为学习Python的示例,下面是一个高效求解一个范围内的素数的程序,不需要使用除法或者求模运算。 #coding:utf-8 #设置python...

Python简明入门教程

本文实例讲述了Python简明入门教程。分享给大家供大家参考。具体如下: 一、基本概念 1、数 在Python中有4种类型的数——整数、长整数、浮点数和复数。 (1)2是一个整数的例子。...

利用PyInstaller将python程序.py转为.exe的方法详解

前言 最近经常用到一个.py程序,但是每次在不同电脑上用,希望能把Python脚本发布为脱离Python平台运行的可执行程序,比如单个exe。PyInstalle满足要求。 PyIns...

python命令行工具Click快速掌握

前言 写 Python 的经常要写一些命令行工具,虽然标准库提供有命令行解析工具 Argparse,但是写起来非常麻烦,我很少会使用它。命令行工具中用起来最爽的就是 Click,它是 F...