关于Python中的向量相加和numpy中的向量相加效率对比

yipeiwu_com6年前Python基础

直接使用Python来实现向量的相加

# -*-coding:utf-8-*-
#向量相加
def pythonsum(n):
 a = range(n)
 b = range(n)
 c = []
 for i in range(len(a)):
  a[i] = i**2
  b[i] = i**3
  c.append(a[i]+b[i])
 return a,b,c

print pythonsum(4),type(pythonsum(4))
for arg in pythonsum(4):
 print arg

从这里这个输出结果可以看得出来,return多个值时,是以列表的形式返回的

([0, 1, 4, 9], [0, 1, 8, 27], [0, 2, 12, 36]) <type 'tuple'>
[0, 1, 4, 9]
[0, 1, 8, 27]
[0, 2, 12, 36]

使用numpy包实现两个向量的相加

def numpysum(n):
 a = np.arange(n) ** 2
 b = np.arange(n) ** 3
 c = a + b
 return a,b,c
(array([0, 1, 4, 9]), array([ 0, 1, 8, 27]), array([ 0, 2, 12, 36])) <type 'function'>
[0 1 4 9]
[ 0 1 8 27]
[ 0 2 12 36]

比较用Python实现两个向量相加和用numpy实现两个向量相加的情况

size = 1000
start = datetime.now()
c = pythonsum(size)
delta = datetime.now() - start
# print 'The last 2 elements of the sum',c[-2:]
print 'pythonSum elapsed time in microseconds',delta.microseconds

size = 1000
start1 = datetime.now()
c1 = numpysum(size)
delta1 = datetime.now() - start1
# print 'The last 2 elements of the sum',c1[-2:]
print 'numpySum elapsed time in microseconds',delta1.microseconds

从下面程序运行结果我们可以看到在处理向量是numpy要比Python计算高出不知道多少倍

pythonSum elapsed time in microseconds 1000
numpySum elapsed time in microseconds 0

以上这篇关于Python中的向量相加和numpy中的向量相加效率对比就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

在Python中使用matplotlib模块绘制数据图的示例

在Python中使用matplotlib模块绘制数据图的示例

 matplotlib是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地进行制图。而且也可以方便地将它作为绘图控件,嵌入GUI应用程序...

Pytorch 抽取vgg各层并进行定制化处理的方法

工作中有时候需要对vgg进行定制化处理,比如有些时候需要借助于vgg的层结构,但是需要使用的是2 channels输入,等等需求,这时候可以使用vgg的原始结构用class重写一遍,但是...

python装饰器简介---这一篇也许就够了(推荐)

Python装饰器(decorator)是在程序开发中经常使用到的功能,合理使用装饰器,能让我们的程序如虎添翼。 装饰器引入 初期及问题诞生 假如现在在一个公司,有A B C三个业务部门...

python 使用pygame工具包实现贪吃蛇游戏(多彩版)

python 使用pygame工具包实现贪吃蛇游戏(多彩版)

今天我们用python和python的工具包pygame来编写一个贪吃蛇的小游戏 贪吃蛇游戏功能介绍 贪吃蛇的游戏规则如下: 通过上下左右键或者WASD键来移动蛇来,让它吃到食物,...

Python模块包中__init__.py文件功能分析

本文实例讲述了Python模块包中__init__.py文件功能。分享给大家供大家参考,具体如下: 用django做开发已经一年多的时间,但基本没注意python模块中__init__....