关于Python中的向量相加和numpy中的向量相加效率对比

yipeiwu_com6年前Python基础

直接使用Python来实现向量的相加

# -*-coding:utf-8-*-
#向量相加
def pythonsum(n):
 a = range(n)
 b = range(n)
 c = []
 for i in range(len(a)):
  a[i] = i**2
  b[i] = i**3
  c.append(a[i]+b[i])
 return a,b,c

print pythonsum(4),type(pythonsum(4))
for arg in pythonsum(4):
 print arg

从这里这个输出结果可以看得出来,return多个值时,是以列表的形式返回的

([0, 1, 4, 9], [0, 1, 8, 27], [0, 2, 12, 36]) <type 'tuple'>
[0, 1, 4, 9]
[0, 1, 8, 27]
[0, 2, 12, 36]

使用numpy包实现两个向量的相加

def numpysum(n):
 a = np.arange(n) ** 2
 b = np.arange(n) ** 3
 c = a + b
 return a,b,c
(array([0, 1, 4, 9]), array([ 0, 1, 8, 27]), array([ 0, 2, 12, 36])) <type 'function'>
[0 1 4 9]
[ 0 1 8 27]
[ 0 2 12 36]

比较用Python实现两个向量相加和用numpy实现两个向量相加的情况

size = 1000
start = datetime.now()
c = pythonsum(size)
delta = datetime.now() - start
# print 'The last 2 elements of the sum',c[-2:]
print 'pythonSum elapsed time in microseconds',delta.microseconds

size = 1000
start1 = datetime.now()
c1 = numpysum(size)
delta1 = datetime.now() - start1
# print 'The last 2 elements of the sum',c1[-2:]
print 'numpySum elapsed time in microseconds',delta1.microseconds

从下面程序运行结果我们可以看到在处理向量是numpy要比Python计算高出不知道多少倍

pythonSum elapsed time in microseconds 1000
numpySum elapsed time in microseconds 0

以上这篇关于Python中的向量相加和numpy中的向量相加效率对比就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python+opencv 实现图片文字的分割的方法示例

Python+opencv 实现图片文字的分割的方法示例

实现步骤: 1、通过水平投影对图形进行水平分割,获取每一行的图像; 2、通过垂直投影对分割的每一行图像进行垂直分割,最终确定每一个字符的坐标位置,分割出每一个字符; 先简单介绍一下投影法...

python中ASCII码和字符的转换方法

将ASCII字符转换为对应的数值即‘a'-->65,使用ord函数,ord('a') 反之,使用chr函数,将数值转换为对应的ASCII字符,chr(65) 可以同时使用这两个函数...

python自动化测试之异常及日志操作实例分析

本文实例讲述了python自动化测试之异常及日志操作。分享给大家供大家参考,具体如下:   为了保持自动化测试用例的健壮性,异常的捕获及处理,日志的记录对掌握自动化测试执行情况尤为重要,...

python打包exe开机自动启动的实例(windows)

一、背景 简单的写个.exe程序,没必要去学习mfc、c++等,可以学习python。python可以轻易的调用windows的api,轻松的实现你想干的事。下面就是实现打包的exe文...

解决python多行注释引发缩进错误的问题

如下所示: m_start =date +' 09:00' m_end =date +' 13:00' rsv_1 ={ 'act':'set_resv', 'd...