关于Python中的向量相加和numpy中的向量相加效率对比

yipeiwu_com6年前Python基础

直接使用Python来实现向量的相加

# -*-coding:utf-8-*-
#向量相加
def pythonsum(n):
 a = range(n)
 b = range(n)
 c = []
 for i in range(len(a)):
  a[i] = i**2
  b[i] = i**3
  c.append(a[i]+b[i])
 return a,b,c

print pythonsum(4),type(pythonsum(4))
for arg in pythonsum(4):
 print arg

从这里这个输出结果可以看得出来,return多个值时,是以列表的形式返回的

([0, 1, 4, 9], [0, 1, 8, 27], [0, 2, 12, 36]) <type 'tuple'>
[0, 1, 4, 9]
[0, 1, 8, 27]
[0, 2, 12, 36]

使用numpy包实现两个向量的相加

def numpysum(n):
 a = np.arange(n) ** 2
 b = np.arange(n) ** 3
 c = a + b
 return a,b,c
(array([0, 1, 4, 9]), array([ 0, 1, 8, 27]), array([ 0, 2, 12, 36])) <type 'function'>
[0 1 4 9]
[ 0 1 8 27]
[ 0 2 12 36]

比较用Python实现两个向量相加和用numpy实现两个向量相加的情况

size = 1000
start = datetime.now()
c = pythonsum(size)
delta = datetime.now() - start
# print 'The last 2 elements of the sum',c[-2:]
print 'pythonSum elapsed time in microseconds',delta.microseconds

size = 1000
start1 = datetime.now()
c1 = numpysum(size)
delta1 = datetime.now() - start1
# print 'The last 2 elements of the sum',c1[-2:]
print 'numpySum elapsed time in microseconds',delta1.microseconds

从下面程序运行结果我们可以看到在处理向量是numpy要比Python计算高出不知道多少倍

pythonSum elapsed time in microseconds 1000
numpySum elapsed time in microseconds 0

以上这篇关于Python中的向量相加和numpy中的向量相加效率对比就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

使用 tf.nn.dynamic_rnn 展开时间维度方式

使用 tf.nn.dynamic_rnn 展开时间维度方式

对于单个的 RNNCell , 使用色的 call 函数进行运算时 ,只是在序列时间上前进了一步 。如使用 x1、 ho 得到此h1, 通过 x2 、 h1 得到 h2 ...

Python模拟登陆淘宝并统计淘宝消费情况的代码实例分享

Python模拟登陆淘宝并统计淘宝消费情况的代码实例分享

支付宝十年账单上的数字有点吓人,但它统计的项目太多,只是想看看到底单纯在淘宝上支出了多少,于是写了段脚本,统计任意时间段淘宝订单的消费情况,看那结果其实在淘宝上我还是相当节约的说。 脚本...

Python写的一个简单监控系统

Python写的一个简单监控系统

市面上有很多开源的监控系统:Cacti、nagios、zabbix。感觉都不符合我的需求,为什么不自己做一个呢 用Python两个小时徒手撸了一个简易的监控系统,给大家分享一下,希望能对...

提升python处理速度原理及方法实例

这篇文章主要介绍了提升python处理速度原理及方法实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下  导读:作为日常生产开发中非常...

浅谈Python中的作用域规则和闭包

在对Python中的闭包进行简单分析之前,我们先了解一下Python中的作用域规则。关于Python中作用域的详细知识,有很多的博文都进行了介绍。这里我们先从一个简单的例子入手。 Pyt...