关于Python中的向量相加和numpy中的向量相加效率对比

yipeiwu_com6年前Python基础

直接使用Python来实现向量的相加

# -*-coding:utf-8-*-
#向量相加
def pythonsum(n):
 a = range(n)
 b = range(n)
 c = []
 for i in range(len(a)):
  a[i] = i**2
  b[i] = i**3
  c.append(a[i]+b[i])
 return a,b,c

print pythonsum(4),type(pythonsum(4))
for arg in pythonsum(4):
 print arg

从这里这个输出结果可以看得出来,return多个值时,是以列表的形式返回的

([0, 1, 4, 9], [0, 1, 8, 27], [0, 2, 12, 36]) <type 'tuple'>
[0, 1, 4, 9]
[0, 1, 8, 27]
[0, 2, 12, 36]

使用numpy包实现两个向量的相加

def numpysum(n):
 a = np.arange(n) ** 2
 b = np.arange(n) ** 3
 c = a + b
 return a,b,c
(array([0, 1, 4, 9]), array([ 0, 1, 8, 27]), array([ 0, 2, 12, 36])) <type 'function'>
[0 1 4 9]
[ 0 1 8 27]
[ 0 2 12 36]

比较用Python实现两个向量相加和用numpy实现两个向量相加的情况

size = 1000
start = datetime.now()
c = pythonsum(size)
delta = datetime.now() - start
# print 'The last 2 elements of the sum',c[-2:]
print 'pythonSum elapsed time in microseconds',delta.microseconds

size = 1000
start1 = datetime.now()
c1 = numpysum(size)
delta1 = datetime.now() - start1
# print 'The last 2 elements of the sum',c1[-2:]
print 'numpySum elapsed time in microseconds',delta1.microseconds

从下面程序运行结果我们可以看到在处理向量是numpy要比Python计算高出不知道多少倍

pythonSum elapsed time in microseconds 1000
numpySum elapsed time in microseconds 0

以上这篇关于Python中的向量相加和numpy中的向量相加效率对比就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

解决Python 中英文混输格式对齐的问题

Python中使用str.format进行格式化输出 format使用方法较多,这里只说明其在填充与对齐上的使用方法: 填充与对齐 填充常跟对齐一起使用 ^、<、>分别是居中...

理解生产者消费者模型及在Python编程中的运用实例

理解生产者消费者模型及在Python编程中的运用实例

什么是生产者消费者模型 在 工作中,大家可能会碰到这样一种情况:某个模块负责产生数据,这些数据由另一个模块来负责处理(此处的模块是广义的,可以是类、函数、线程、进程等)。产 生数据的模块...

详解Django rest_framework实现RESTful API

详解Django rest_framework实现RESTful API

一、什么是REST 面向资源是REST最明显的特征,资源是一种看待服务器的方式,将服务器看作是由很多离散的资源组成。每个资源是服务器上一个可命名的抽象概念。因为资源是一个抽象的概念,所以...

django框架自定义用户表操作示例

本文实例讲述了django框架自定义用户表操作。分享给大家供大家参考,具体如下: django中已经给我生成默认的User表,其中的字段已经可以满足我们的日常需求。 但有时候,我们需要更...

python单例模式原理与创建方法实例分析

本文实例讲述了python单例模式原理与创建方法。分享给大家供大家参考,具体如下: 1. 单例是什么 举个常见的单例模式例子,我们日常使用的电脑上都有一个回收站,在整个操作系统中,回收站...