关于Python中的向量相加和numpy中的向量相加效率对比

yipeiwu_com6年前Python基础

直接使用Python来实现向量的相加

# -*-coding:utf-8-*-
#向量相加
def pythonsum(n):
 a = range(n)
 b = range(n)
 c = []
 for i in range(len(a)):
  a[i] = i**2
  b[i] = i**3
  c.append(a[i]+b[i])
 return a,b,c

print pythonsum(4),type(pythonsum(4))
for arg in pythonsum(4):
 print arg

从这里这个输出结果可以看得出来,return多个值时,是以列表的形式返回的

([0, 1, 4, 9], [0, 1, 8, 27], [0, 2, 12, 36]) <type 'tuple'>
[0, 1, 4, 9]
[0, 1, 8, 27]
[0, 2, 12, 36]

使用numpy包实现两个向量的相加

def numpysum(n):
 a = np.arange(n) ** 2
 b = np.arange(n) ** 3
 c = a + b
 return a,b,c
(array([0, 1, 4, 9]), array([ 0, 1, 8, 27]), array([ 0, 2, 12, 36])) <type 'function'>
[0 1 4 9]
[ 0 1 8 27]
[ 0 2 12 36]

比较用Python实现两个向量相加和用numpy实现两个向量相加的情况

size = 1000
start = datetime.now()
c = pythonsum(size)
delta = datetime.now() - start
# print 'The last 2 elements of the sum',c[-2:]
print 'pythonSum elapsed time in microseconds',delta.microseconds

size = 1000
start1 = datetime.now()
c1 = numpysum(size)
delta1 = datetime.now() - start1
# print 'The last 2 elements of the sum',c1[-2:]
print 'numpySum elapsed time in microseconds',delta1.microseconds

从下面程序运行结果我们可以看到在处理向量是numpy要比Python计算高出不知道多少倍

pythonSum elapsed time in microseconds 1000
numpySum elapsed time in microseconds 0

以上这篇关于Python中的向量相加和numpy中的向量相加效率对比就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Ranorex通过Python将报告发送到邮箱的方法

Ranorex通过Python将报告发送到邮箱的方法

Ranorex测试报告如何发送到邮箱在网上看了下,其实可以通过在Ranorex上或者VS调用编写发送邮箱代码就可以执行发送了,RX主要涉及到的开发语言是C++或者.NET。但是我想用Py...

Django框架之登录后自定义跳转页面的实现方法

Django auth 登陆后页面跳转至/account/profile,修改跳转至其他页面 这几天在学习django,django功能很强大,自带的auth,基本可以满足用户注册登陆登...

50行Python代码实现视频中物体颜色识别和跟踪(必须以红色为例)

50行Python代码实现视频中物体颜色识别和跟踪(必须以红色为例)

目前计算机视觉(CV)与自然语言处理(NLP)及语音识别并列为人工智能三大热点方向,而计算机视觉中的对象检测(objectdetection)应用非常广泛,比如自动驾驶、视频监控、工业质...

Python中 传递值 和 传递引用 的区别解析

Python中 传递值 和 传递引用 的区别解析

对于不可变类型传递值(不会影响原数据)   不可变类型 对于可变类型传递引用(会影响原数据)   不可变类型传递引用 python3不可变类型 Number(数...

python简单实现基数排序算法

本文实例讲述了python简单实现基数排序算法。分享给大家供大家参考。具体实现方法如下: from random import randint def main(): A = [...