opencv实现简单人脸识别

yipeiwu_com6年前Python基础

对于opencv 它提供了许多已经练习好的模型可供使用,我们需要通过他们来进行人脸识别

参考了网上许多资料 

假设你已经配好了开发环境 ,在我之前的博客中由开发环境的配置。

项目代码结构:

dataSet : 存储训练用的图片,他由data_gen生成,当然也可以修改代码由其他方式生成

haarcascade_frontalface_alt.xml  、 haarcascade_frontalface_default.xml: 用于人脸检测的haar分类器,网上普遍说第一个效果更好,第二个运行速度更快

data_gen.py:生成我们所需的数据

trainer.py: 训练数据集

train.yml: 由train.py生成的人脸识别模型,供后面的人脸识别使用

recognize.py:视频中的人脸识别

data_gen.py

连续拍20张照片当作训练数据,每个人建立一组数据

import cv2
 
detector = cv2.CascadeClassifier('haarcascade_frontalface_alt.xml')
cap = cv2.VideoCapture(0)
sampleNum = 0
Id = input('enter your id: ')
 
while True:
 ret, img = cap.read()
 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
 faces = detector.detectMultiScale(gray, 1.3, 5)
 for (x, y, w, h) in faces:
 cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)
 
 # incrementing sample number
 sampleNum = sampleNum + 1
 # saving the captured face in the dataset folder
 cv2.imwrite("dataSet/User." + str(Id) + '.' + str(sampleNum) + ".jpg", gray[y:y + h, x:x + w]) #
 
 cv2.imshow('frame', img)
 # wait for 100 miliseconds
 if cv2.waitKey(100) & 0xFF == ord('q'):
 break
 # break if the sample number is morethan 20
 elif sampleNum > 20:
 break
 
cap.release()
cv2.destroyAllWindows()

train.py

训练数据

import cv2
import os
import numpy as np
from PIL import Image
 
# recognizer = cv2.createLBPHFaceRecognizer()
detector = cv2.CascadeClassifier("/Users/qiuchenglin/PycharmProjects/face_recognize/haarcascade_frontalface_alt.xml")
recognizer = cv2.face.LBPHFaceRecognizer_create()
 
 
def get_images_and_labels(path):
 image_paths = [os.path.join(path, f) for f in os.listdir(path)]
 face_samples = []
 ids = []
 
 for image_path in image_paths:
 image = Image.open(image_path).convert('L')
 image_np = np.array(image, 'uint8')
 if os.path.split(image_path)[-1].split(".")[-1] != 'jpg':
  continue
 image_id = int(os.path.split(image_path)[-1].split(".")[1])
 faces = detector.detectMultiScale(image_np)
 for (x, y, w, h) in faces:
  face_samples.append(image_np[y:y + h, x:x + w])
  ids.append(image_id)
 
 return face_samples, ids
 
 
Faces, Ids = get_images_and_labels('dataSet')
recognizer.train(Faces, np.array(Ids))
recognizer.save('trainner.yml')

recognize.py

下面就是根据训练好的模型进行人脸识别,根据之前生成数据的编号,可以填入相对应的人名,例如以下示例我训练了三组人的数据

import cv2
import numpy as np
 
recognizer = cv2.face.LBPHFaceRecognizer_create()
# recognizer = cv2.createLBPHFaceRecognizer() # in OpenCV 2
recognizer.read('/Users/qiuchenglin/PycharmProjects/face_recognize/trainner.yml')
# recognizer.load('trainner/trainner.yml') # in OpenCV 2
 
cascade_path = "/Users/qiuchenglin/PycharmProjects/face_recognize/haarcascade_frontalface_alt.xml"
face_cascade = cv2.CascadeClassifier(cascade_path)
cam = cv2.VideoCapture(0)
# font = cv2.cv.InitFont(cv2.cv.CV_FONT_HERSHEY_SIMPLEX, 1, 1, 0, 1, 1) # in OpenCV 2
font = cv2.FONT_HERSHEY_SIMPLEX
 
while True:
 ret, im = cam.read()
 gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
 faces = face_cascade.detectMultiScale(gray, 1.2, 5)
 for (x, y, w, h) in faces:
 cv2.rectangle(im, (x - 50, y - 50), (x + w + 50, y + h + 50), (225, 0, 0), 2)
 img_id, conf = recognizer.predict(gray[y:y + h, x:x + w])
 if conf > 50:
  if img_id == 1:
  img_id = 'liuzb'
  elif img_id == 2:
  img_id = 'linqc'
  elif img_id == 3:
  img_id = 'keaibao'
 else:
  img_id = "Unknown"
 # cv2.cv.PutText(cv2.cv.fromarray(im), str(Id), (x, y + h), font, 255)
 cv2.putText(im, str(img_id), (x, y), font, 1, (0, 255, 0), 1)
 cv2.imshow('im', im)
 if cv2.waitKey(10) & 0xFF == ord('q'):
 break
 
cam.release()
cv2.destroyAllWindows() 

简单的一个人脸识别就完成了,只能说准确率没有非常高。

之后想办法进行提高。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python+unittest+requests实现接口自动化的方法

python+unittest+requests实现接口自动化的方法

前言: Requests简介 Requests 是使用Apache2 Licensed 许可证的 HTTP 库。用 Python 编写,真正的为人类着想。 Python 标准库中的 ur...

python matplotlib画图实例代码分享

python matplotlib画图实例代码分享

python的matplotlib包支持我们画图,有点非常多,现学习如下。 首先要导入包,在以后的示例中默认已经导入这两个包 import matplotlib.pyplot as...

python通过paramiko复制远程文件及文件目录到本地

最近写运维自动化平台,需要用python写很多的小功能模块。 这里就分享一个用Python的paramiko来实现功能的一段代码: 复制远程服务器上的文件及文件夹到本地目录。 解释一下什...

Python语言描述KNN算法与Kd树

Python语言描述KNN算法与Kd树

最近邻法和k-近邻法 下面图片中只有三种豆,有三个豆是未知的种类,如何判定他们的种类? 提供一种思路,即:未知的豆离哪种豆最近就认为未知豆和该豆是同一种类。由此,我们引出最近邻算法的...

Python中摘要算法MD5,SHA1简介及应用实例代码

关于算法的学习,小编觉得编程语言中的算法大都有一些相通的地方,主要的方面一是了解这一算法能用来干什么,另一方面,学习它在这类编程语言中怎么实现。 摘要算法又称哈希算法、散列算法。它通过一...