Django框架 querySet功能解析

yipeiwu_com5年前Python基础

可切片

使用Python 的切片语法来限制查询集记录的数目 。它等同于SQL 的LIMIT 和OFFSET 子句。

>>> Entry.objects.all()[:5] # (LIMIT 5)
Entry.objects.all()[5:10] # (OFFSET 5 LIMIT 5)

不支持负的索引(例如Entry.objects.all()[-1])。通常,查询集 的切片返回一个新的查询集 —— 它不会执行查询。   

可迭代

articleList=models.Article.objects.all()
for article in articleList:
  print(article.title) 

惰性查询

查询集 是惰性执行的 —— 创建查询集不会带来任何数据库的访问。你可以将过滤器保持一整天,直到查询集 需要求值时,Django 才会真正运行这个查询。

queryResult=models.Article.objects.all() # not hits database
print(queryResult) # hits database 
for article in queryResult:
  print(article.title)  # hits database

一般来说,只有在“请求”查询集 的结果时才会到数据库中去获取它们。当你确实需要结果时,查询集 通过访问数据库来求值。 关于求值发生的准确时间,参见何时计算查询集。  

缓存机制

每个查询集都包含一个缓存来最小化对数据库的访问。理解它是如何工作的将让你编写最高效的代码。

在一个新创建的查询集中,缓存为空。首次对查询集进行求值 —— 同时发生数据库查询 ——Django 将保存查询的结果到查询集的缓存中并返回明确请求的结果(例如,如果正在迭代查询集,则返回下一个结果)。接下来对该查询集 的求值将重用缓存的结果。

请牢记这个缓存行为,因为对查询集使用不当的话,它会坑你的。例如,下面的语句创建两个查询集,对它们求值,然后扔掉它们:

print([a.title for a in models.Article.objects.all()])
print([a.create_time for a in models.Article.objects.all()])

这意味着相同的数据库查询将执行两次,显然倍增了你的数据库负载。同时,还有可能两个结果列表并不包含相同的数据库记录,因为在两次请求期间有可能有Article被添加进来或删除掉。为了避免这个问题,只需保存查询集并重新使用它: 

queryResult=models.Article.objects.all()
print([a.title for a in queryResult])
print([a.create_time for a in queryResult])

何时查询集不会被缓存?

查询集不会永远缓存它们的结果。当只对查询集的部分进行求值时会检查缓存, 如果这个部分不在缓存中,那么接下来查询返回的记录都将不会被缓存。所以,这意味着使用切片或索引来限制查询集将不会填充缓存。

例如,重复获取查询集对象中一个特定的索引将每次都查询数据库:

>>> queryset = Entry.objects.all()
>>> print queryset[5] # Queries the database
>>> print queryset[5] # Queries the database again

然而,如果已经对全部查询集求值过,则将检查缓存:  

>>> queryset = Entry.objects.all()
>>> [entry for entry in queryset] # Queries the database
>>> print queryset[5] # Uses cache
>>> print queryset[5] # Uses cache

下面是一些其它例子,它们会使得全部的查询集被求值并填充到缓存中:

>>> [entry for entry in queryset]
>>> bool(queryset)
>>> entry in queryset
>>> list(queryset)

注:简单地打印查询集不会填充缓存。  

queryResult=models.Article.objects.all()
print(queryResult) # hits database
print(queryResult) # hits database 

exists()与iterator()方法

exists:

简单的使用if语句进行判断也会完全执行整个queryset并且把数据放入cache,虽然你并不需要这些 数据!为了避免这个,可以用exists()方法来检查是否有数据:

if queryResult.exists():
  #SELECT (1) AS "a" FROM "blog_article" LIMIT 1; args=()
    print("exists...")

iterator:

当queryset非常巨大时,cache会成为问题。

处理成千上万的记录时,将它们一次装入内存是很浪费的。更糟糕的是,巨大的queryset可能会锁住系统 进程,让你的程序濒临崩溃。要避免在遍历数据的同时产生queryset cache,可以使用iterator()方法 来获取数据,处理完数据就将其丢弃。

objs = Book.objects.all().iterator()
# iterator()可以一次只从数据库获取少量数据,这样可以节省内存
for obj in objs:
  print(obj.title)
#BUT,再次遍历没有打印,因为迭代器已经在上一次遍历(next)到最后一次了,没得遍历了
for obj in objs:
  print(obj.title)

当然,使用iterator()方法来防止生成cache,意味着遍历同一个queryset时会重复执行查询。所以使 #用iterator()的时候要当心,确保你的代码在操作一个大的queryset时没有重复执行查询。

总结:

queryset的cache是用于减少程序对数据库的查询,在通常的使用下会保证只有在需要的时候才会查询数据库。 使用exists()和iterator()方法可以优化程序对内存的使用。不过,由于它们并不会生成queryset cache,可能 会造成额外的数据库查询。 

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Ubuntu下安装PyV8

这几天需要在使用PyV8来进行python与javascript的交互。之前在window下安装过,直接使用的exe安装的,也没有遇到什么问题。 结果这次在Ubuntu安装遇到了不少坑-...

Python读取Excel表格,并同时画折线图和柱状图的方法

Python读取Excel表格,并同时画折线图和柱状图的方法

今日给大家分享一个Python读取Excel表格,同时采用表格中的数值画图柱状图和折线图,这里只需要几行代码便可以实。 首先我们需要安装一个Excel操作的库xlrd,这个很简单,在安装...

Python3编码问题 Unicode utf-8 bytes互转方法

为什么需要本文,因为在对接某些很老的接口的时候,需要传递过去的是16进制的hex字符串,并且要求对传的字符串做编码,这里就介绍了utf-8 Unicode bytes 等等。 #英文...

Python文本统计功能之西游记用字统计操作示例

Python文本统计功能之西游记用字统计操作示例

本文实例讲述了Python文本统计功能之西游记用字统计操作。分享给大家供大家参考,具体如下: 一、数据 xyj.txt,《西游记》的文本,2.2MB 致敬吴承恩大师,4020行(段) 二...

face++与python实现人脸识别签到(考勤)功能

face++与python实现人脸识别签到(考勤)功能

项目实现利用face++开发一个课堂签到的软件,实现面向摄像头即可完成记录学号、姓名和时间的签到工作。 项目架构 项目使用场景 代码: 流程代码,主文件 #!usr/bin/ #...