python用线性回归预测股票价格的实现代码

yipeiwu_com6年前Python基础

线性回归在整个财务中广泛应用于众多应用程序中。在之前的教程中,我们使用普通最小二乘法(OLS)计算了公司的beta与相对索引的比较。现在,我们将使用线性回归来估计股票价格。

线性回归是一种用于模拟因变量(y)和自变量(x)之间关系的方法。通过简单的线性回归,只有一个自变量x。可能有许多独立变量属于多元线性回归的范畴。在这种情况下,我们只有一个自变量即日期。对于第一个日期上升到日期向量长度的整数,该日期将由1开始的整数表示,该日期可以根据时间序列数据而变化。当然,我们的因变量将是股票的价格。为了理解线性回归,您必须了解您可能在学校早期学到的相当基本的等式。

y = a + bx

  • Y =预测值或因变量
  • b =线的斜率
  • x =系数或自变量
  • a = y截距

从本质上讲,这将构成我们对数据的最佳拟合。在OLS过程中通过数据集绘制了大量线条。该过程的目标是找到最佳拟合线,最小化平方误差和(SSE)与股票价格(y)的实际值以及我们在数据集中所有点的预测股票价格。这由下图表示。对于绘制的每条线,数据集中的每个点与模型输出的相应预测值之间存在差异。将这些差异中的每一个加起来并平方以产生平方和。从列表中,我们采用最小值导致我们的最佳匹配线。考虑下图:

第一部分:获取数据:

from matplotlib import style
 
from sklearn.linear_model import LinearRegression
 
from sklearn.model_selection import train_test_split
 
import quandl
 
import datetime
 
style.use('ggplot')
 
#Dates
 
start_date = datetime.date(2017,1,3)
 
t_date=start_date, end_date=end_date, collapse="daily")
 
df = df.reset_index()
 
prices = np.reshape(prices, (len(prices), 1))

第二部分:创建一个回归对象:

', linewidth=3, label = 'Predicted Price') #plotting the line made by linear regression
 
plt.title('Linear Regression | Time vs. Price')
 
plt.legend()
 
predicted_price =regressor.predict(date)

输出:

预测日期输入价格:

创建训练/测试集

et
 
xtrain, x , ytrain)
 
#Train
 
plt.title('Linear Regression | Time vs. Price')
 
#Test Set Graph
 
plt.scatter(xtest, ytest, color='yellow', label= 'Actual Price') #plotting the initial datapoints
 
plt.plot(xtest, regressor.predict(xtest), color='blue', linewidth=3, label = 'Predicted Price') #plotting
 
plt.show()

输出:

测试集:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

简单理解Python中的装饰器

Python的装饰器可以实现在代码运行期间修改函数的上下文, 即可以定义函数在执行之前进行何种操作和函数执行后进行何种操作, 而函数本身并没有任何的改变。 首先, 我们先定义一个函数,...

python excel转换csv代码实例

为了提高工作效率(偷懒),用python去解决。 工作需要,需要将excel文件转化为csv文件,要是手工的一个个去转换,每个sheet页不但有几十个字段,中间还夹杂着空格,然后按顺序转...

使用Python的Supervisor进行进程监控以及自动启动

使用Python的Supervisor进行进程监控以及自动启动

做服务器端开发的同学应该都对进程监控不会陌生,最近恰好要更换 uwsgi 为 gunicorn,而gunicorn又恰好有这么一章讲进程监控,所以多研究了下。 结合之前在腾讯工作的经验,...

Python中属性和描述符的正确使用

关于@property装饰器 在Python中我们使用@property装饰器来把对函数的调用伪装成对属性的访问。 那么为什么要这样做呢?因为@property让我们将自定义的代码同变量...

Python解析多帧dicom数据详解

概述 pydicom是一个常用python DICOM parser。但是,没有提供解析多帧图的示例。本文结合相关函数和DICOM知识做一个简单说明。 DICOM多帧数据存储 DICOM...