python用线性回归预测股票价格的实现代码

yipeiwu_com6年前Python基础

线性回归在整个财务中广泛应用于众多应用程序中。在之前的教程中,我们使用普通最小二乘法(OLS)计算了公司的beta与相对索引的比较。现在,我们将使用线性回归来估计股票价格。

线性回归是一种用于模拟因变量(y)和自变量(x)之间关系的方法。通过简单的线性回归,只有一个自变量x。可能有许多独立变量属于多元线性回归的范畴。在这种情况下,我们只有一个自变量即日期。对于第一个日期上升到日期向量长度的整数,该日期将由1开始的整数表示,该日期可以根据时间序列数据而变化。当然,我们的因变量将是股票的价格。为了理解线性回归,您必须了解您可能在学校早期学到的相当基本的等式。

y = a + bx

  • Y =预测值或因变量
  • b =线的斜率
  • x =系数或自变量
  • a = y截距

从本质上讲,这将构成我们对数据的最佳拟合。在OLS过程中通过数据集绘制了大量线条。该过程的目标是找到最佳拟合线,最小化平方误差和(SSE)与股票价格(y)的实际值以及我们在数据集中所有点的预测股票价格。这由下图表示。对于绘制的每条线,数据集中的每个点与模型输出的相应预测值之间存在差异。将这些差异中的每一个加起来并平方以产生平方和。从列表中,我们采用最小值导致我们的最佳匹配线。考虑下图:

第一部分:获取数据:

from matplotlib import style
 
from sklearn.linear_model import LinearRegression
 
from sklearn.model_selection import train_test_split
 
import quandl
 
import datetime
 
style.use('ggplot')
 
#Dates
 
start_date = datetime.date(2017,1,3)
 
t_date=start_date, end_date=end_date, collapse="daily")
 
df = df.reset_index()
 
prices = np.reshape(prices, (len(prices), 1))

第二部分:创建一个回归对象:

', linewidth=3, label = 'Predicted Price') #plotting the line made by linear regression
 
plt.title('Linear Regression | Time vs. Price')
 
plt.legend()
 
predicted_price =regressor.predict(date)

输出:

预测日期输入价格:

创建训练/测试集

et
 
xtrain, x , ytrain)
 
#Train
 
plt.title('Linear Regression | Time vs. Price')
 
#Test Set Graph
 
plt.scatter(xtest, ytest, color='yellow', label= 'Actual Price') #plotting the initial datapoints
 
plt.plot(xtest, regressor.predict(xtest), color='blue', linewidth=3, label = 'Predicted Price') #plotting
 
plt.show()

输出:

测试集:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Centos7 下安装最新的python3.8

Python 3.8是Python语言的最新版本,它适合用于编写脚本、自动化以及机器学习和Web开发等各种任务。现在Python 3.8已经进入官方的beta阶段,这个版本带来了许多语法...

Python实现Kmeans聚类算法

本节内容:本节内容是根据上学期所上的模式识别课程的作业整理而来,第一道题目是Kmeans聚类算法,数据集是Iris(鸢尾花的数据集),分类数k是3,数据维数是4。 关于聚类  ...

Python的string模块中的Template类字符串模板用法

string.Template() string.Template()内添加替换的字符, 使用"$"符号, 或 在字符串内, 使用"${}"; 调用时使用string.substitut...

使用Tensorflow将自己的数据分割成batch训练实例

使用Tensorflow将自己的数据分割成batch训练实例

学习神经网络的时候,网上的数据集已经分割成了batch,训练的时候直接使用batch.next()就可以获取batch,但是有的时候需要使用自己的数据集,然而自己的数据集不是batch形...

Flask模板引擎之Jinja2语法介绍

Jinja是组成Flask的模板引擎。可能你还不太了解它是干嘛的,但你对下面这些百分号和大括号肯定不陌生: {% block body %} <ul> {% for...