余弦相似性计算及python代码实现过程解析

yipeiwu_com6年前Python基础

A:西米喜欢健身

B:超超不爱健身,喜欢打游戏

step1:分词

A:西米/喜欢/健身

B:超超/不/喜欢/健身,喜欢/打/游戏

step2:列出两个句子的并集

西米/喜欢/健身/超超/不/打/游戏

step3:计算词频向量

A:[1,1,1,0,0,0,0]

B:[0,1,1,1,1,1,1]

step4:计算余弦值

余弦值越大,证明夹角越小,两个向量越相似。

step5:python代码实现

import jieba
import jieba.analyse
def words2vec(words1=None, words2=None):
 v1 = []
 v2 = []
 tag1 = jieba.analyse.extract_tags(words1, withWeight=True)
 tag2 = jieba.analyse.extract_tags(words2, withWeight=True)
 tag_dict1 = {i[0]: i[1] for i in tag1}
 tag_dict2 = {i[0]: i[1] for i in tag2}
 merged_tag = set(tag_dict1.keys()) | set(tag_dict2.keys())
 for i in merged_tag:
  if i in tag_dict1:
   v1.append(tag_dict1[i])
  else:
   v1.append(0)
  if i in tag_dict2:
   v2.append(tag_dict2[i])
  else:
   v2.append(0)
 return v1, v2
def cosine_similarity(vector1, vector2):
 dot_product = 0.0
 normA = 0.0
 normB = 0.0
 for a, b in zip(vector1, vector2):
  dot_product += a * b
  normA += a ** 2
  normB += b ** 2
 if normA == 0.0 or normB == 0.0:
  return 0
 else:
  return round(dot_product / ((normA**0.5)*(normB**0.5)) * 100, 2)  
def cosine(str1, str2):
 vec1, vec2 = words2vec(str1, str2)
 return cosine_similarity(vec1, vec2)
print(cosine('阿克苏苹果', '阿克苏苹果'))

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

对Python3中的print函数以及与python2的对比分析

对Python3中的print函数以及与python2的对比分析

本文首先介绍在python3中print函数的应用,然后对比在pyhton2中的应用。(本文作者所用版本为3.6.0) 首先我们通过help(print)命令来查看print函数的相关信...

使用基于Python的Tornado框架的HTTP客户端的教程

由于tornado内置的AsyncHTTPClient功能过于单一, 所以自己写了一个基于Tornado的HTTP客户端库, 鉴于自己多处使用了这个库, 所以从项目中提取出来, 写成一个...

用于业余项目的8个优秀Python库

在 Python/Django 的世界里有这样一个谚语:为语言而来,为社区而留。对绝大多数人来说的确是这样的,但是,还有一件事情使得我们一直停留在 Python 的世界里,不愿离开,那就...

提升python处理速度原理及方法实例

这篇文章主要介绍了提升python处理速度原理及方法实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下  导读:作为日常生产开发中非常...

Python中使用pypdf2合并、分割、加密pdf文件的代码详解

朋友需要对一个pdf文件进行分割,在网上查了查发现这个pypdf2可以完成这些操作,所以就研究了下这个库,并做一些记录。首先pypdf2是python3版本的,在之前的2版本有一个对应p...