余弦相似性计算及python代码实现过程解析

yipeiwu_com5年前Python基础

A:西米喜欢健身

B:超超不爱健身,喜欢打游戏

step1:分词

A:西米/喜欢/健身

B:超超/不/喜欢/健身,喜欢/打/游戏

step2:列出两个句子的并集

西米/喜欢/健身/超超/不/打/游戏

step3:计算词频向量

A:[1,1,1,0,0,0,0]

B:[0,1,1,1,1,1,1]

step4:计算余弦值

余弦值越大,证明夹角越小,两个向量越相似。

step5:python代码实现

import jieba
import jieba.analyse
def words2vec(words1=None, words2=None):
 v1 = []
 v2 = []
 tag1 = jieba.analyse.extract_tags(words1, withWeight=True)
 tag2 = jieba.analyse.extract_tags(words2, withWeight=True)
 tag_dict1 = {i[0]: i[1] for i in tag1}
 tag_dict2 = {i[0]: i[1] for i in tag2}
 merged_tag = set(tag_dict1.keys()) | set(tag_dict2.keys())
 for i in merged_tag:
  if i in tag_dict1:
   v1.append(tag_dict1[i])
  else:
   v1.append(0)
  if i in tag_dict2:
   v2.append(tag_dict2[i])
  else:
   v2.append(0)
 return v1, v2
def cosine_similarity(vector1, vector2):
 dot_product = 0.0
 normA = 0.0
 normB = 0.0
 for a, b in zip(vector1, vector2):
  dot_product += a * b
  normA += a ** 2
  normB += b ** 2
 if normA == 0.0 or normB == 0.0:
  return 0
 else:
  return round(dot_product / ((normA**0.5)*(normB**0.5)) * 100, 2)  
def cosine(str1, str2):
 vec1, vec2 = words2vec(str1, str2)
 return cosine_similarity(vec1, vec2)
print(cosine('阿克苏苹果', '阿克苏苹果'))

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python字符串和常用数据结构知识总结

python字符串和常用数据结构知识总结

使用字符串 第二次世界大战促使了现代电子计算机的诞生,当初的想法很简单,就是用计算机来计算导弹的弹道,因此在计算机刚刚诞生的那个年代,计算机处理的信息主要是数值,而世界上的第一台电子计...

python将字符串转换成json的方法小结

最近在工作中遇到了一个小问题,如果要将字符串型的数据转换成dict类型,我第一时间就想到了使用json函数。但是里面出现了一些问题 1、通过json来转换: In [1]: impo...

bat和python批量重命名文件的实现代码

最近从某网站下载了一批文档,但是文件是用数字串命名的文档(很多图书馆都这样吧),现在我也下载完了这些文件,也有这些文件的列表,就是不能一个一个的把文件给重命名吧所以从网上找了这几个脚本。...

Python3操作Excel文件(读写)的简单实例

安装 读Excel文件通过模块xlrd 写Excel文件同过模块xlwt(可惜的是只支持Python2.3到Python2.7版本) xlwt-future模块,支持Py...

python numpy格式化打印的实例

1.问题描述 在使用numpy的时候,我们经常在debug的时候将numpy数组打印下来,但是有的时候数组里面都是小数,数组又比较大,打印下来的时候非常不适合观察。这里主要讲一下如何让n...