余弦相似性计算及python代码实现过程解析

yipeiwu_com6年前Python基础

A:西米喜欢健身

B:超超不爱健身,喜欢打游戏

step1:分词

A:西米/喜欢/健身

B:超超/不/喜欢/健身,喜欢/打/游戏

step2:列出两个句子的并集

西米/喜欢/健身/超超/不/打/游戏

step3:计算词频向量

A:[1,1,1,0,0,0,0]

B:[0,1,1,1,1,1,1]

step4:计算余弦值

余弦值越大,证明夹角越小,两个向量越相似。

step5:python代码实现

import jieba
import jieba.analyse
def words2vec(words1=None, words2=None):
 v1 = []
 v2 = []
 tag1 = jieba.analyse.extract_tags(words1, withWeight=True)
 tag2 = jieba.analyse.extract_tags(words2, withWeight=True)
 tag_dict1 = {i[0]: i[1] for i in tag1}
 tag_dict2 = {i[0]: i[1] for i in tag2}
 merged_tag = set(tag_dict1.keys()) | set(tag_dict2.keys())
 for i in merged_tag:
  if i in tag_dict1:
   v1.append(tag_dict1[i])
  else:
   v1.append(0)
  if i in tag_dict2:
   v2.append(tag_dict2[i])
  else:
   v2.append(0)
 return v1, v2
def cosine_similarity(vector1, vector2):
 dot_product = 0.0
 normA = 0.0
 normB = 0.0
 for a, b in zip(vector1, vector2):
  dot_product += a * b
  normA += a ** 2
  normB += b ** 2
 if normA == 0.0 or normB == 0.0:
  return 0
 else:
  return round(dot_product / ((normA**0.5)*(normB**0.5)) * 100, 2)  
def cosine(str1, str2):
 vec1, vec2 = words2vec(str1, str2)
 return cosine_similarity(vec1, vec2)
print(cosine('阿克苏苹果', '阿克苏苹果'))

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python处理两种分隔符的数据集方法

python处理两种分隔符的数据集方法

在做机器学习的时候,遇到这样一个数据集... 一共399行10列, 1-9列是用不定长度的空格分割, 第9-10列之间用'\t'分割, 前九列都是数值类型,其中第三列有若干个'?...

Python为何不能用可变对象作为默认参数的值

Python为何不能用可变对象作为默认参数的值

先来看一道题目: >>> def func(numbers=[], num=1): ... numbers.append(num) ... return numbe...

浅谈Pytorch中的torch.gather函数的含义

浅谈Pytorch中的torch.gather函数的含义

pytorch中的gather函数 pytorch比tensorflow更加编程友好,所以准备用pytorch试着做最近要做的一些实验。 立个flag开始学习pytorch,新开一个分类...

简单了解python的一些位运算技巧

简单了解python的一些位运算技巧

前言 位运算的性能大家想必是清楚的,效率绝对高。相信爱好源码的同学,在学习阅读源码的过程中会发现不少源码使用了位运算。但是为啥在实际编程过程中应用少呢?想必最大的原因,是较为难懂。不过,...

mac 安装python网络请求包requests方法

mac 安装python网络请求包requests方法

如下所示: sudo easy_install requests 出现如图所示信息 done 即可愉快的使用 requests了 以上这篇mac 安装python网络请求...