余弦相似性计算及python代码实现过程解析

yipeiwu_com5年前Python基础

A:西米喜欢健身

B:超超不爱健身,喜欢打游戏

step1:分词

A:西米/喜欢/健身

B:超超/不/喜欢/健身,喜欢/打/游戏

step2:列出两个句子的并集

西米/喜欢/健身/超超/不/打/游戏

step3:计算词频向量

A:[1,1,1,0,0,0,0]

B:[0,1,1,1,1,1,1]

step4:计算余弦值

余弦值越大,证明夹角越小,两个向量越相似。

step5:python代码实现

import jieba
import jieba.analyse
def words2vec(words1=None, words2=None):
 v1 = []
 v2 = []
 tag1 = jieba.analyse.extract_tags(words1, withWeight=True)
 tag2 = jieba.analyse.extract_tags(words2, withWeight=True)
 tag_dict1 = {i[0]: i[1] for i in tag1}
 tag_dict2 = {i[0]: i[1] for i in tag2}
 merged_tag = set(tag_dict1.keys()) | set(tag_dict2.keys())
 for i in merged_tag:
  if i in tag_dict1:
   v1.append(tag_dict1[i])
  else:
   v1.append(0)
  if i in tag_dict2:
   v2.append(tag_dict2[i])
  else:
   v2.append(0)
 return v1, v2
def cosine_similarity(vector1, vector2):
 dot_product = 0.0
 normA = 0.0
 normB = 0.0
 for a, b in zip(vector1, vector2):
  dot_product += a * b
  normA += a ** 2
  normB += b ** 2
 if normA == 0.0 or normB == 0.0:
  return 0
 else:
  return round(dot_product / ((normA**0.5)*(normB**0.5)) * 100, 2)  
def cosine(str1, str2):
 vec1, vec2 = words2vec(str1, str2)
 return cosine_similarity(vec1, vec2)
print(cosine('阿克苏苹果', '阿克苏苹果'))

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

基于Django框架的权限组件rbac实例讲解

基于Django框架的权限组件rbac实例讲解

1.基于rbac的权限管理 RBAC(Role-Based Access Control,基于角色的访问控制),就是用户通过角色与权限进行关联。简单地说,一个用户拥有若干角色,一个角色拥...

python中数组和矩阵乘法及使用总结(推荐)

Matrix是Array的一个小的分支,包含于Array。所以matrix 拥有array的所有特性。 但在数组乘和矩阵乘时,两者各有不同,如果a和b是两个matrices,那么a*b,...

Python的ORM框架SQLObject入门实例

SQLObject和SQLAlchemy都是Python语言下的ORM(对象关系映射)解决方案,其中SQLAlchemy被认为是Python下事实上的ORM标准。当然,两者都很优秀。 一...

Python使用Pandas对csv文件进行数据处理的方法

Python使用Pandas对csv文件进行数据处理的方法

今天接到一个新的任务,要对一个140多M的csv文件进行数据处理,总共有170多万行,尝试了导入本地的MySQL数据库进行查询,结果用Navicat导入直接卡死....估计是XAMPP套...

pandas带有重复索引操作方法

有的时候,可能会遇到表格中出现重复的索引,在操作重复索引的时候可能要注意一些问题。 一、判断索引是否重复 a、Series索引重复判断 s = Series([1,2,3,4,5],...