python 进程间数据共享multiProcess.Manger实现解析

yipeiwu_com6年前Python基础

一、进程之间的数据共享

展望未来,基于消息传递的并发编程是大势所趋

即便是使用线程,推荐做法也是将程序设计为大量独立的线程集合,通过消息队列交换数据。

这样极大地减少了对使用锁定和其他同步手段的需求,还可以扩展到分布式系统中。

但进程间应该尽量避免通信,即便需要通信,也应该选择进程安全的工具来避免加锁带来的问题。

以后我们会尝试使用数据库来解决现在进程之间的数据共享问题。

1.1 Manager模块介绍

虽然进程间数据独立,但可以通过Manager实现数据共享,事实上Manager的功能远不止于此。

A manager object returned by Manager() controls a server process which holds Python objects and allows other processes to manipulate them using proxies.

A manager returned by Manager() will support types list, dict, Namespace, Lock, RLock, Semaphore, BoundedSemaphore, Condition, Event, Barrier, Queue, Value and Array.

1.2 Manager例子

manager这里可以共享列表,字典等很多数据类型

from multiprocessing import Manager,Process,Lock
def work(d,lock):
  lock.acquire()
  d['count'] -= 1
  lock.release()
if __name__ == '__main__':
  lock = Lock()
  with Manager() as m:
    dic = m.dict({'count':100})#生成一个字典,可在多个进程间共享和传递
    p_l = []
    for i in range(100):
      p = Process(target=work,args=(dic,lock))
      p_l.append(p)
      p.start()
    for p in p_l: #等待结果
      p.join()
    print(dic)

{'count':0}

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python实现批量视频分帧、保存视频帧

本篇博客介绍利用python脚本实现视频分帧,并将每一帧保存到本地。主要基于opencv包来实现,在运行代码前确保opencv包已正确安装。下面是主要代码: import os i...

解决Pytorch 训练与测试时爆显存(out of memory)的问题

Pytorch 训练时有时候会因为加载的东西过多而爆显存,有些时候这种情况还可以使用cuda的清理技术进行修整,当然如果模型实在太大,那也没办法。 使用torch.cuda.empty_...

Python OpenCV视频截取并保存实现代码

这篇文章主要介绍了Python OpenCV视频截取并保存实现代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 在图像处理之前,我们...

python list是否包含另一个list所有元素的实例

如下所示: #!/usr/bin/env python # coding: utf-8 a = [1, 2, 3, 4, 5] b = [3, 4, 5] d = [False f...

Python3中的列表生成式、生成器与迭代器实例详解

本文实例讲述了Python3中的列表生成式、生成器与迭代器。分享给大家供大家参考,具体如下: 列表生成式 Python内置的一种极其强大的生成列表 list 的表达式。返回结果必须是列表...