pytorch多GPU并行运算的实现

yipeiwu_com6年前Python基础

Pytorch多GPU运行

设置可用GPU环境变量。例如,使用0号和1号GPU'

os.environ["CUDA_VISIBLE_DEVICES"] = '0,1'

设置模型参数放置到多个GPU上。在pytorch1.0之后的版本中,多GPU运行变得十分方便,先将模型的参数设置并行

    if torch.cuda.device_count() > 1:
      print("Let's use", torch.cuda.device_count(), "GPUs!")
      model = nn.DataParallel(model)

将模型参数设置使用GPU运行

    if torch.cuda.is_available():
      model.cuda()

踩坑记录

在训练中,需要使用验证集/测试集对目前的准确率进行测试,验证集/测试集的加载也会占用部分显存,所以在训练开始时,不要将所有显存都几乎占满,稍微留一些显存给训练过程中的测试环节

pytorch并行后,假设batchsize设置为64,表示每张并行使用的GPU都使用batchsize=64来计算(单张卡使用时,使用batchsize=64比较合适时,多张卡并行时,batchsize仍为64比较合适,而不是64*并行卡数)。

参考

https://www.zhihu.com/question/67726969

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

pytorch的batch normalize使用详解

torch.nn.BatchNorm1d() 1、BatchNorm1d(num_features, eps = 1e-05, momentum=0.1, affine=True) 对于...

使用Python中PDB模块中的命令来调试Python代码的教程

你有多少次陷入不得不更改别人代码的境地?如果你是一个开发团队的一员,那么你遇到上述境地的次数比你想要的还要多。然而,Python中有一个整洁的调试特性(像其他大多数语言一样),在这种情况...

Python Web编程之WSGI协议简介

本文实例讲述了Python Web编程之WSGI协议。分享给大家供大家参考,具体如下: WSGI简介 Web框架和Wen服务器之间需要进行通信,如果在设计时它们之间无法相互匹配,那么对框...

浅谈Python小波分析库Pywavelets的一点使用心得

浅谈Python小波分析库Pywavelets的一点使用心得

本文介绍了Python小波分析库Pywavelets,分享给大家,具体如下: # -*- coding: utf-8 -*- import numpy as np import m...

python模块导入的方法

模块在python编程中的地位举足轻重,熟练运用模块可以大大减少代码量,以最少的代码实现复杂的功能。 下面介绍一下在python编程中如何导入模块: (1)import 模块名:直接导入...