pytorch多GPU并行运算的实现

yipeiwu_com6年前Python基础

Pytorch多GPU运行

设置可用GPU环境变量。例如,使用0号和1号GPU'

os.environ["CUDA_VISIBLE_DEVICES"] = '0,1'

设置模型参数放置到多个GPU上。在pytorch1.0之后的版本中,多GPU运行变得十分方便,先将模型的参数设置并行

    if torch.cuda.device_count() > 1:
      print("Let's use", torch.cuda.device_count(), "GPUs!")
      model = nn.DataParallel(model)

将模型参数设置使用GPU运行

    if torch.cuda.is_available():
      model.cuda()

踩坑记录

在训练中,需要使用验证集/测试集对目前的准确率进行测试,验证集/测试集的加载也会占用部分显存,所以在训练开始时,不要将所有显存都几乎占满,稍微留一些显存给训练过程中的测试环节

pytorch并行后,假设batchsize设置为64,表示每张并行使用的GPU都使用batchsize=64来计算(单张卡使用时,使用batchsize=64比较合适时,多张卡并行时,batchsize仍为64比较合适,而不是64*并行卡数)。

参考

https://www.zhihu.com/question/67726969

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python 面向对象 成员的访问约束

在Python中是通过一套命名体系来识别成约的访问范围的 class MyObjec(object): username = "developerworks" # public _ema...

基于python的socket实现单机五子棋到双人对战

基于python的socket实现单机五子棋到双人对战

基于python的socket实现单机五子棋到双人对战,供大家参考,具体内容如下 本次实验使用python语言。通过socket进行不同机器见的通信,具体可以分为以下四步:1.创建Ser...

Pytorch实现LSTM和GRU示例

Pytorch实现LSTM和GRU示例

为了解决传统RNN无法长时依赖问题,RNN的两个变体LSTM和GRU被引入。 LSTM Long Short Term Memory,称为长短期记忆网络,意思就是长的短时记忆,其解决的仍...

Python中常见的数据类型小结

Python提供多种数据类型来存放数据项集合,主要包括序列(列表list和元组tuple),映射(如字典dict),集合(set),下面对这几种一一介绍: 一 序列 1.列表list 列...

详解Python在使用JSON时需要注意的编码问题

详解Python在使用JSON时需要注意的编码问题

写这篇文章的缘由是我使用 reqeusts 库请求接口的时候, 直接使用请求参数里的 json 字段发送数据, 但是服务器无法识别我发送的数据, 排查了好久才知道 requests 内部...