pytorch多GPU并行运算的实现

yipeiwu_com6年前Python基础

Pytorch多GPU运行

设置可用GPU环境变量。例如,使用0号和1号GPU'

os.environ["CUDA_VISIBLE_DEVICES"] = '0,1'

设置模型参数放置到多个GPU上。在pytorch1.0之后的版本中,多GPU运行变得十分方便,先将模型的参数设置并行

    if torch.cuda.device_count() > 1:
      print("Let's use", torch.cuda.device_count(), "GPUs!")
      model = nn.DataParallel(model)

将模型参数设置使用GPU运行

    if torch.cuda.is_available():
      model.cuda()

踩坑记录

在训练中,需要使用验证集/测试集对目前的准确率进行测试,验证集/测试集的加载也会占用部分显存,所以在训练开始时,不要将所有显存都几乎占满,稍微留一些显存给训练过程中的测试环节

pytorch并行后,假设batchsize设置为64,表示每张并行使用的GPU都使用batchsize=64来计算(单张卡使用时,使用batchsize=64比较合适时,多张卡并行时,batchsize仍为64比较合适,而不是64*并行卡数)。

参考

https://www.zhihu.com/question/67726969

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

深入浅析Python获取对象信息的函数type()、isinstance()、dir()

深入浅析Python获取对象信息的函数type()、isinstance()、dir()

type()函数: 使用type()函数可以判断对象的类型,如果一个变量指向了函数或类,也可以用type判断。 如: class Student(object): name = '...

python实现排序算法解析

python实现排序算法解析

本文实例为大家分享了python实现排序算法的具体代码,供大家参考,具体内容如下 一、冒泡排序 def bububle_sort(alist): """冒泡排序(稳定|n^2m)...

Django 创建新App及其常用命令的实现方法

创建新的项目 django-admin.py startproject my_project 创建新的App # 在Django项目(my_project)的根目录下执行 py...

Python自定义线程池实现方法分析

Python自定义线程池实现方法分析

本文实例讲述了Python自定义线程池实现方法。分享给大家供大家参考,具体如下: 关于python的多线程,由与GIL的存在被广大群主所诟病,说python的多线程不是真正的多线程。但多...

Python自然语言处理之词干,词形与最大匹配算法代码详解

本文主要对词干提取及词形还原以及最大匹配算法进行了介绍和代码示例,Python实现,下面我们一起看看具体内容。 自然语言处理中一个很重要的操作就是所谓的stemming和lemmatiz...