pytorch多GPU并行运算的实现

yipeiwu_com6年前Python基础

Pytorch多GPU运行

设置可用GPU环境变量。例如,使用0号和1号GPU'

os.environ["CUDA_VISIBLE_DEVICES"] = '0,1'

设置模型参数放置到多个GPU上。在pytorch1.0之后的版本中,多GPU运行变得十分方便,先将模型的参数设置并行

    if torch.cuda.device_count() > 1:
      print("Let's use", torch.cuda.device_count(), "GPUs!")
      model = nn.DataParallel(model)

将模型参数设置使用GPU运行

    if torch.cuda.is_available():
      model.cuda()

踩坑记录

在训练中,需要使用验证集/测试集对目前的准确率进行测试,验证集/测试集的加载也会占用部分显存,所以在训练开始时,不要将所有显存都几乎占满,稍微留一些显存给训练过程中的测试环节

pytorch并行后,假设batchsize设置为64,表示每张并行使用的GPU都使用batchsize=64来计算(单张卡使用时,使用batchsize=64比较合适时,多张卡并行时,batchsize仍为64比较合适,而不是64*并行卡数)。

参考

https://www.zhihu.com/question/67726969

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Pytorch基本变量类型FloatTensor与Variable用法

Pytorch基本变量类型FloatTensor与Variable用法

pytorch中基本的变量类型当属FloatTensor(以下都用floattensor),而Variable(以下都用variable)是floattensor的封装,除了包含floa...

梯度下降法介绍及利用Python实现的方法示例

梯度下降法介绍及利用Python实现的方法示例

本文主要给大家介绍了梯度下降法及利用Python实现的相关内容,分享出来供大家参考学习,下面话不多说,来一起看看详细的介绍吧。 梯度下降法介绍 梯度下降法(gradient descen...

Python实现多行注释的另类方法

Python程序的注释感觉很不合群,对于习惯了使用/**/多行注释的人来说,到Python中只能使用#号进行单行注释很痛苦。 复制代码 代码如下: # 这里是单行注释 # a = 50...

Python基本socket通信控制操作示例

本文实例讲述了Python基本socket通信控制操作。分享给大家供大家参考,具体如下: python — 基本socket通信控制(控制在celie.txt文件中主机IP地址可以发送信...

Python-嵌套列表list的全面解析

一个3层嵌套列表m m=["a",["b","c",["inner"]]] 需要解析为基本的数据项a,b,c,inner 基本的取数据项方法: for i in m: print i这...