pytorch多GPU并行运算的实现

yipeiwu_com6年前Python基础

Pytorch多GPU运行

设置可用GPU环境变量。例如,使用0号和1号GPU'

os.environ["CUDA_VISIBLE_DEVICES"] = '0,1'

设置模型参数放置到多个GPU上。在pytorch1.0之后的版本中,多GPU运行变得十分方便,先将模型的参数设置并行

    if torch.cuda.device_count() > 1:
      print("Let's use", torch.cuda.device_count(), "GPUs!")
      model = nn.DataParallel(model)

将模型参数设置使用GPU运行

    if torch.cuda.is_available():
      model.cuda()

踩坑记录

在训练中,需要使用验证集/测试集对目前的准确率进行测试,验证集/测试集的加载也会占用部分显存,所以在训练开始时,不要将所有显存都几乎占满,稍微留一些显存给训练过程中的测试环节

pytorch并行后,假设batchsize设置为64,表示每张并行使用的GPU都使用batchsize=64来计算(单张卡使用时,使用batchsize=64比较合适时,多张卡并行时,batchsize仍为64比较合适,而不是64*并行卡数)。

参考

https://www.zhihu.com/question/67726969

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实现的简单模板引擎功能示例

本文实例讲述了Python实现的简单模板引擎功能。分享给大家供大家参考,具体如下: #coding:utf- 8 __author__="sdm" __author_email='s...

python读取并写入mat文件的方法

先给大家介绍下python读取并写入mat文件的方法 用matlab生成一个示例mat文件: clear;clc matrix1 = magic(5); matrix2 = magi...

python 画二维、三维点之间的线段实现方法

python 画二维、三维点之间的线段实现方法

如下所示: from mpl_toolkits.mplot3d import axes3d import matplotlib.pyplot as plt # 打开画图窗口1,在...

50行Python代码实现视频中物体颜色识别和跟踪(必须以红色为例)

50行Python代码实现视频中物体颜色识别和跟踪(必须以红色为例)

目前计算机视觉(CV)与自然语言处理(NLP)及语音识别并列为人工智能三大热点方向,而计算机视觉中的对象检测(objectdetection)应用非常广泛,比如自动驾驶、视频监控、工业质...

Python备份Mysql脚本

复制代码 代码如下:#!/usr/bin/python  import os  import time  import ftp...