pytorch多GPU并行运算的实现

yipeiwu_com6年前Python基础

Pytorch多GPU运行

设置可用GPU环境变量。例如,使用0号和1号GPU'

os.environ["CUDA_VISIBLE_DEVICES"] = '0,1'

设置模型参数放置到多个GPU上。在pytorch1.0之后的版本中,多GPU运行变得十分方便,先将模型的参数设置并行

    if torch.cuda.device_count() > 1:
      print("Let's use", torch.cuda.device_count(), "GPUs!")
      model = nn.DataParallel(model)

将模型参数设置使用GPU运行

    if torch.cuda.is_available():
      model.cuda()

踩坑记录

在训练中,需要使用验证集/测试集对目前的准确率进行测试,验证集/测试集的加载也会占用部分显存,所以在训练开始时,不要将所有显存都几乎占满,稍微留一些显存给训练过程中的测试环节

pytorch并行后,假设batchsize设置为64,表示每张并行使用的GPU都使用batchsize=64来计算(单张卡使用时,使用batchsize=64比较合适时,多张卡并行时,batchsize仍为64比较合适,而不是64*并行卡数)。

参考

https://www.zhihu.com/question/67726969

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实现的寻找前5个默尼森数算法示例

本文实例讲述了Python实现的寻找前5个默尼森数算法。分享给大家供大家参考,具体如下: 找前5个默尼森数。 若P是素数且M也是素数,并且满足等式M=2**P-1,则称M为默尼森数。例如...

神经网络理论基础及Python实现详解

神经网络理论基础及Python实现详解

一、多层前向神经网络 多层前向神经网络由三部分组成:输出层、隐藏层、输出层,每层由单元组成; 输入层由训练集的实例特征向量传入,经过连接结点的权重传入下一层,前一层的输出是下一层的输入;...

Python简单实现自动删除目录下空文件夹的方法

本文实例讲述了Python简单实现自动删除目录下空文件夹的方法。分享给大家供大家参考,具体如下: 总是发现电脑用上一段时间,各种软件生成各种目录,可是这些目录都是空文件夹,感觉没用,或许...

django写用户登录判定并跳转制定页面的实例

1. 首先看要设置登陆的界面 book/view.py @user_util.my_login #相当于 select_all=my_login(select_all) def se...

python获取url的返回信息方法

如下所示: #!/usr/bin/env python # -*- coding: utf-8 -*- import os import sys import urllib im...