pytorch多GPU并行运算的实现

yipeiwu_com6年前Python基础

Pytorch多GPU运行

设置可用GPU环境变量。例如,使用0号和1号GPU'

os.environ["CUDA_VISIBLE_DEVICES"] = '0,1'

设置模型参数放置到多个GPU上。在pytorch1.0之后的版本中,多GPU运行变得十分方便,先将模型的参数设置并行

    if torch.cuda.device_count() > 1:
      print("Let's use", torch.cuda.device_count(), "GPUs!")
      model = nn.DataParallel(model)

将模型参数设置使用GPU运行

    if torch.cuda.is_available():
      model.cuda()

踩坑记录

在训练中,需要使用验证集/测试集对目前的准确率进行测试,验证集/测试集的加载也会占用部分显存,所以在训练开始时,不要将所有显存都几乎占满,稍微留一些显存给训练过程中的测试环节

pytorch并行后,假设batchsize设置为64,表示每张并行使用的GPU都使用batchsize=64来计算(单张卡使用时,使用batchsize=64比较合适时,多张卡并行时,batchsize仍为64比较合适,而不是64*并行卡数)。

参考

https://www.zhihu.com/question/67726969

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python实现图片二值化及灰度处理方式

我就废话不多说了,直接上代码吧! 集成环境:win10 pycharm #!/usr/bin/env python3.5.2 # -*- coding: utf-8 -*- ''...

详解python开发环境搭建

详解python开发环境搭建

虽然网上有很多python开发环境搭建的文章,不过重复造轮子还是要的,记录一下过程,方便自己以后配置,也方便正在学习中的同事配置他们的环境。 1.准备好安装包 1)上python官网下载...

Python判断两个对象相等的原理

概述 大部分的python程序员平时编程的时候,很少关心两个对象为什么相等,因为教程和经验来说,他们就应该相等,比如1==1就应该返回True,可是当我们想要定义自己的对象或者修改默认的...

Python编程实现从字典中提取子集的方法分析

本文实例讲述了Python编程实现从字典中提取子集的方法。分享给大家供大家参考,具体如下: 首先我们会想到使用字典推导式(dictionary comprehension)来解决这个问题...

python监控文件或目录变化

本文实例实现的功能是监控一个文件或目录的变化,如果有变化,把文件上传备份至备份主机,并且要监控上传过程是否有问题等,具体内容如下 #!/usr/bin/env python #co...