python 矢量数据转栅格数据代码实例

yipeiwu_com6年前Python基础

这篇文章主要介绍了python 矢量数据转栅格数据代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

投影包osr与proj4的使用

osr投影转换示例

from osgeo import osr,ogr
#定义投影
#wgs84
source=osr.SpatialReference()
source.ImportFromEPSG(4326)
#google
target=osr.SpatialReference()
target.ImportFromEPSG(3857)
#简单投影转换
coordTrans=osr.CoordinateTransformation(source,target)
#点转换
coordTrans.TransformPoint(117,40)
#点数组转换
coordTrans.TransformPoints([(117,40),(117.5,39.5)])
#SF几何对象转换
g=ogr.CreateGeometryFromWkt("POINT(117 40)")
#转换前wgs84
print(g.ExportToWkt())
print(g.GetX(),g.GetY())
#转换后google
g.Transform(coordTrans)
print(g.ExportToWkt())
print(g.GetX(),g.GetY())
2.投影转换示例
from pyproj import Proj,Geod,transform
# projection 1: UTM zone 15, grs80 ellipse, NAD83 datum
# (defined by epsg code 26915)
p1 = Proj(init='epsg:26915')
# projection 2: UTM zone 15, clrk66 ellipse, NAD27 datum
p2 = Proj(init='epsg:26715')
#点的转换(首先将地理坐标转换成p1投影坐标系下的平面直角坐标,再将x1,y1转换到p2投影坐标系下,最后将p2投影坐标系下的平面直角坐标转换成地理坐标)
x1,y1=p1(-92.199881,38.56694)
x2, y2 = transform(p1,p2,x1,y1)
print('%9.3f %11.3f' % (x1,y1))
print('%9.3f %11.3f' % (x2,y2))
print('%8.3f %5.3f' % p2(x2,y2,inverse=True))
#点数组的转换
lats = (38.83,39.32,38.75)
lons = (-92.22,-94.72,-90.37)
x1,y1=p1(lons,lats)
x2,y2=transform(p1,p2,x1,y1)
xy=x1+y1
print('%9.3f %9.3f %9.3f %11.3f %11.3f %11.3f' % xy)
xy=x2+y2
print('%9.3f %9.3f %9.3f %11.3f %11.3f %11.3f' % xy)
lons, lats = p2(x2,y2,inverse=True)
xy=lons+lats
print('%8.3f %8.3f %8.3f %5.3f %5.3f %5.3f' % xy)
p1 = Proj(proj='latlong',datum='WGS84')
x1 = -111.5; y1 = 45.25919444444
p2 = Proj(proj="utm",zone=10,datum='NAD27')
x2, y2 = transform(p1, p2, x1, y1)
print("%s %s" % (str(x2)[:9],str(y2)[:9]))

栅格数据投影转换

#栅格数据投影转换
from osgeo import gdal,osr
from osgeo.gdalconst import *
#源图像投影
source=osr.SpatialReference()
source.ImportFromEPSG(32650)
#目标图像投影
target=osr.SpatialReference()
target.ImportFromEPSG(3857)
coordTrans=osr.CoordinateTransformation(source,target)
#打开源图像文件
ds=gdal.Open("fdem.tif")
#仿射矩阵六参数
mat=ds.GetGeoTransform()
#源图像的左上角与右下角像素,在目标图像中的坐标
(ulx, uly, ulz)=coordTrans.TransformPoint(mat[0],mat[3])
(lrx, lry, lrz ) = coordTrans.TransformPoint(mat[0] + mat[1]*ds.RasterXSize, mat[3] + mat[5]* ds.RasterYSize )
#创建目标图像文件(空白图像),行列数、波段数以及数值类型仍等同原图像
driver=gdal.GetDriverByName("GTiff")
ts=driver.Create("fdem_lonlat.tif",ds.RasterXSize,ds.RasterYSize,1,GDT_UInt16)
#转换后图像的分辨率
resolution=(int)((lrx-ulx)/ds.RasterXSize)
#转换后图像的六个放射变换参数
mat2=[ulx, resolution,0,uly,0, -resolution]
ts.SetGeoTransform(mat2)
ts.SetProjection(target.ExportToWkt())
#投影转换后需要做重采样
gdal.ReprojectImage(ds, ts, source.ExportToWkt(), target.ExportToWkt(), gdal.GRA_Bilinear)
#关闭
ds = None
ts= None

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python requests证书问题解决

用requests包请求https的网站时,我们偶尔会遇到证书问题。也就是常见的SSLerror,遇到这种问题莫慌莫慌。 这里没有找到合适的网站去报SSL证书的错误,所以就假装请求了一个...

详解Python中open()函数指定文件打开方式的用法

文件打开方式 当我们用open()函数去打开文件的时候,有好几种打开的模式。 'r'->只读 'w'->只写,文件已存在则清空,不存在则创建。 'a'->追加,写到文件...

python实现Dijkstra静态寻路算法

python实现Dijkstra静态寻路算法

算法介绍 迪科斯彻算法使用了广度优先搜索解决赋权有向图或者无向图的单源最短路径问题,算法最终得到一个最短路径树。该算法常用于路由算法或者作为其他图算法的一个子模块。 当然目前也有人将它用...

python数据归一化及三种方法详解

python数据归一化及三种方法详解

数据标准化(归一化)处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数...

django连接mysql配置方法总结(推荐)

最近在学习django,学到第五章模型时,需要连接数据库,然后,在这里分享一下方法。 起初是不知道怎样配置mysql数据库,但是还好,django的官网上面有相关的配置方法,下面就直接...