Python 进程操作之进程间通过队列共享数据,队列Queue简单示例

yipeiwu_com5年前Python基础

本文实例讲述了Python 进程操作之进程间通过队列共享数据,队列Queue。分享给大家供大家参考,具体如下:

队列中的数据是放在内存中的,可以通过分布式缓存redis优化队列。

demo.py(进程通过队列共享数据):

import multiprocessing
def download_from_web(q):
  """下载数据"""
  # 模拟从网上下载的数据
  data = [11, 22, 33, 44]
  # 向队列中写入数据
  for temp in data:
    q.put(temp) # 队列中写数据,队列满了会阻塞。 put_nowait() 队列满了会抛异常
  print("---下载器已经下载完了数据并且存入到队列中----")
def analysis_data(q):
  """数据处理"""
  waitting_analysis_data = list()
  # 从队列中获取数据
  while True:
    data = q.get() # 队列中读数据,队列空了会阻塞。 get_nowait() 队列空了会抛异常
    waitting_analysis_data.append(data)
    if q.empty(): # 队列是否为空。 q.full() 队列是否满了。
      break
  # 模拟数据处理
  print(waitting_analysis_data)
def main():
  # 1. 创建一个队列 (先进先出)
  q = multiprocessing.Queue(10) # 最多放10个数据。 如果不指定长度,默认最大(和硬件相关)
  # 2. 创建多个进程,将队列的引用当做实参进行传递
  p1 = multiprocessing.Process(target=download_from_web, args=(q,))
  p2 = multiprocessing.Process(target=analysis_data, args=(q,))
  p1.start()
  p2.start()
if __name__ == "__main__":
  main()

运行结果:

---下载器已经下载完了数据并且存入到队列中----
[11, 22, 33, 44]

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python进程与线程操作技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》、《Python+MySQL数据库程序设计入门教程》及《Python常见数据库操作技巧汇总

希望本文所述对大家Python程序设计有所帮助。

相关文章

Python标准库sched模块使用指南

事件调度 sched 模块内容很简单,只定义了一个类。它用来最为一个通用的事件调度模块。 class sched.scheduler(timefunc, delayfunc) 这个类定义...

利用Python-iGraph如何绘制贴吧/微博的好友关系图详解

利用Python-iGraph如何绘制贴吧/微博的好友关系图详解

前言 最近工作中遇到了一些需求,想通过图形化的方式显示社交网络特定用户的好友关系,上网找了一下这方面的图形库有networkx、graphviz等,找了好久我选择了iGraph这个图形库...

Python实现批量检测HTTP服务的状态

Python实现批量检测HTTP服务的状态

用Python实现批量测试一组url的可用性(可以包括HTTP状态、响应时间等)并统计出现不可用情况的次数和频率等。 类似的,这样的脚本可以判断某个服务的可用性,以及在众多的服务提供者中...

对numpy 数组和矩阵的乘法的进一步理解

对numpy 数组和矩阵的乘法的进一步理解

1、当为array的时候,默认d*f就是对应元素的乘积,multiply也是对应元素的乘积,dot(d,f)会转化为矩阵的乘积, dot点乘意味着相加,而multiply只是对应元素相乘...

python求加权平均值的实例(附纯python写法)

首先是数据源: #需要求加权平均值的数据列表 elements = [] #对应的权值列表 weights = [] 使用numpy直接求: import numpy as n...