Python 中list ,set,dict的大规模查找效率对比详解

yipeiwu_com6年前Python基础

很多时候我们可能要频繁的进行元素的find 或in操作,本人一直天真的以为python的list做了hash,通过红黑树来高效查找···直到今天我真正来测试它和set,dict的查找效率时,才发现自已想太多了!!!!

先看代码:

__author__ = 'jmh081701'
import numpy
import time
l=[]
sl=set()
dl=dict()
r=numpy.random.randint(0,10000000,100000)
for i in range(0,100000):
  l.append(r[i])
  sl.add(r[i])
  dl.setdefault(r[i],1)
#生成3种数据结构供查找,常规的list,集合sl,字典dl.里面的元素都是随机生成的,为什么要随机生成元素?这是防止某些结构对有序数据的偏向导致测试效果不客观。

start=time.clock()
for i in range(100000):
  t=i in sl
end=time.clock()
print("set:",end-start)
#计算通过set来查找的效率
start=time.clock()
for i in range(100000):
  t=i in dl
end=time.clock()
print("dict:",end-start)
#计算通过dict的效率
start=time.clock()
for i in range(100000):
  t=i in l
end=time.clock()
print("list:",end-start)
#计算通过list的效率

结果:

set: 0.01762632617301519
dict: 0.021149536796960248
······
···
··

呵呵呵呵···list等了20分钟都没出结果。

所以···结果一览无余啊。

查找效率:set>dict>list

单次查询中:看来list 就是O(n)的;而set做了去重,本质应该一颗红黑树(猜测,STL就是红黑树),复杂度O(logn);dict类似对key进行了hash,然后再对hash生成一个红黑树进行查找,其查找复杂其实是O(logn),并不是所谓的O(1)。O(1)只是理想的实现,实际上很多hash的实现是进行了离散化的。dict比set多了一步hash的过程,so 它比set慢,不过差别不大。

so,如果是要频繁的查找,请使用set吧!

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实现的读写json文件功能示例

本文实例讲述了Python实现的读写json文件功能。分享给大家供大家参考,具体如下: 相比java,python对json文件的处理就简单很多。java操作json文件的话需要引用ja...

Python函数中的函数(闭包)用法实例

本文实例讲述了Python闭包的用法。分享给大家供大家参考,具体如下: Python函数中也可以定义函数,也就是闭包。跟js中的闭包概念其实差不多,举个Python中闭包的例子。 d...

基于Python闭包及其作用域详解

基于Python闭包及其作用域详解

关于Python作用域的知识在python作用域有相应的笔记,这个笔记是关于Python闭包及其作用域的详细的笔记 如果在一个内部函数里,对一个外部作用域(但不是全局作用域)的变量进行引...

Python使用gluon/mxnet模块实现的mnist手写数字识别功能完整示例

本文实例讲述了Python使用gluon/mxnet模块实现的mnist手写数字识别功能。分享给大家供大家参考,具体如下: import gluonbook as gb from m...

Python中将字典转换为XML以及相关的命名空间解析

尽管 xml.etree.ElementTree 库通常用来做解析工作,其实它也可以创建XML文档。 例如,考虑如下这个函数: from xml.etree.ElementTree...