Python 中list ,set,dict的大规模查找效率对比详解

yipeiwu_com5年前Python基础

很多时候我们可能要频繁的进行元素的find 或in操作,本人一直天真的以为python的list做了hash,通过红黑树来高效查找···直到今天我真正来测试它和set,dict的查找效率时,才发现自已想太多了!!!!

先看代码:

__author__ = 'jmh081701'
import numpy
import time
l=[]
sl=set()
dl=dict()
r=numpy.random.randint(0,10000000,100000)
for i in range(0,100000):
  l.append(r[i])
  sl.add(r[i])
  dl.setdefault(r[i],1)
#生成3种数据结构供查找,常规的list,集合sl,字典dl.里面的元素都是随机生成的,为什么要随机生成元素?这是防止某些结构对有序数据的偏向导致测试效果不客观。

start=time.clock()
for i in range(100000):
  t=i in sl
end=time.clock()
print("set:",end-start)
#计算通过set来查找的效率
start=time.clock()
for i in range(100000):
  t=i in dl
end=time.clock()
print("dict:",end-start)
#计算通过dict的效率
start=time.clock()
for i in range(100000):
  t=i in l
end=time.clock()
print("list:",end-start)
#计算通过list的效率

结果:

set: 0.01762632617301519
dict: 0.021149536796960248
······
···
··

呵呵呵呵···list等了20分钟都没出结果。

所以···结果一览无余啊。

查找效率:set>dict>list

单次查询中:看来list 就是O(n)的;而set做了去重,本质应该一颗红黑树(猜测,STL就是红黑树),复杂度O(logn);dict类似对key进行了hash,然后再对hash生成一个红黑树进行查找,其查找复杂其实是O(logn),并不是所谓的O(1)。O(1)只是理想的实现,实际上很多hash的实现是进行了离散化的。dict比set多了一步hash的过程,so 它比set慢,不过差别不大。

so,如果是要频繁的查找,请使用set吧!

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

pytorch程序异常后删除占用的显存操作

1-删除模型变量 del model_define 2-清空CUDA cache torch.cuda.empty_cache() 3-步骤2(异步)需要一定时间,设置时延...

浅谈Python基础之I/O模型

浅谈Python基础之I/O模型

一、I/O模型 IO在计算机中指Input/Output,也就是输入和输出。由于程序和运行时数据是在内存中驻留,由CPU这个超快的计算核心来执行,涉及到数据交换的地方,通常是磁盘、网络等...

CentOS下Python3的安装及创建虚拟环境的方法

CentOS下Python3的安装及创建虚拟环境的方法

安装python3 一、安装需要编译的关联库 yum instal -y zlib zlib-devel   (根据自己系统的情况,安装需要的关联库,同样用yum安装...

python输出电脑上所有的串口名的方法

python输出电脑上所有的串口名的方法

输出电脑上所有的串口名: import serial import serial.tools.list_ports from easygui import * port_list...

python中partial()基础用法说明

前言 一个函数可以有多个参数,而在有的情况下有的参数先得到,有的参数需要在后面的情景中才能知道,python 给我们提供了partial函数用于携带部分参数生成一个新函数。 在funct...