python运用sklearn实现KNN分类算法

yipeiwu_com6年前Python基础

KNN(K-Nearest-Neighbours Classiflication)分类算法,供大家参考,具体内容如下

最简单的分类算法,易于理解和实现

实现步骤:通过选取与该点距离最近的k个样本,在这k个样本中哪一个类别的数量多,就把k归为哪一类。

注意

  • 该算法需要保存训练集的观察值,以此判定待分类数据属于哪一类
  • k需要进行自定义,一般选取k<30
  • 距离一般用欧氏距离,即​ 

通过sklearn对数据使用KNN算法进行分类

代码如下:

## 导入鸢尾花数据集
iris = datasets.load_iris()
data = iris.data[:, :2]
target = iris.target

## 区分训练集和测试集,75%的训练集和25%的测试集
train_data, test_data = train_test_split(np.c_[data, target])
## 训练并预测,其中选取k=15
clf = neighbors.KNeighborsClassifier(15, 'distance')
clf.fit(train_data[:, :2], train_data[:, 2])
Z = clf.predict(test_data[:, :2])
print '准确率:' ,clf.score(test_data[:, :2], test_data[:, 2])

colormap = dict(zip(np.unique(target), sns.color_palette()[:3]))
plt.scatter(train_data[:, 0], train_data[:, 1], edgecolors=[colormap[x] for x in train_data[:, 2]],c='', s=80, label='all_data')
plt.scatter(test_data[:, 0], test_data[:, 1], marker='^', color=[colormap[x] for x in Z], s=20, label='test_data')
plt.legend()
plt.show()

结果如下:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

java中两个byte数组实现合并的示例

今天在于硬件进行交互的过程中,要到了了需要两个数组进行合并,然后对数组进行反转和加密操作,以下是两个byte数组合并的方法。 /** * * @param data1 *...

Django如何简单快速实现PUT、DELETE方法

使用django的小伙伴们应该都知道我们是无法开心的处理PUT跟DELETE的 $.ajax({ url: 'XXX', type: 'PUT', dataType: '...

Python编写一个优美的下载器

Python编写一个优美的下载器

本文实例为大家分享了Python编写下载器的具体代码,供大家参考,具体内容如下 #!/bin/python3 # author: lidawei # create: 2016-...

python笔记:mysql、redis操作方法

模块安装: 数据操作用到的模块pymysql,需要通过pip install pymysql进行安装。 redis操作用的模块是redis,需要通过pip install redis进行...

python 将大文件切分为多个小文件的实例

切分文件 最近遇到需要切分文件的需求,当然首选用python来解决,网上搜了下感觉都太复杂了,其实用python自带函数即可解决。 f = open('path&filename',...