python运用sklearn实现KNN分类算法

yipeiwu_com5年前Python基础

KNN(K-Nearest-Neighbours Classiflication)分类算法,供大家参考,具体内容如下

最简单的分类算法,易于理解和实现

实现步骤:通过选取与该点距离最近的k个样本,在这k个样本中哪一个类别的数量多,就把k归为哪一类。

注意

  • 该算法需要保存训练集的观察值,以此判定待分类数据属于哪一类
  • k需要进行自定义,一般选取k<30
  • 距离一般用欧氏距离,即​ 

通过sklearn对数据使用KNN算法进行分类

代码如下:

## 导入鸢尾花数据集
iris = datasets.load_iris()
data = iris.data[:, :2]
target = iris.target

## 区分训练集和测试集,75%的训练集和25%的测试集
train_data, test_data = train_test_split(np.c_[data, target])
## 训练并预测,其中选取k=15
clf = neighbors.KNeighborsClassifier(15, 'distance')
clf.fit(train_data[:, :2], train_data[:, 2])
Z = clf.predict(test_data[:, :2])
print '准确率:' ,clf.score(test_data[:, :2], test_data[:, 2])

colormap = dict(zip(np.unique(target), sns.color_palette()[:3]))
plt.scatter(train_data[:, 0], train_data[:, 1], edgecolors=[colormap[x] for x in train_data[:, 2]],c='', s=80, label='all_data')
plt.scatter(test_data[:, 0], test_data[:, 1], marker='^', color=[colormap[x] for x in Z], s=20, label='test_data')
plt.legend()
plt.show()

结果如下:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python+OpenCV图片局部区域像素值处理改进版详解

Python+OpenCV图片局部区域像素值处理改进版详解

上个版本的Python OpenCV图片局部区域像素值处理,虽然实现了我需要的功能,但还是走了很多弯路,我意识到图片本就是数组形式,对于8位灰度图,通道数为1,它就是个二位数组,这样就没...

Python文件和流(实例讲解)

1.文件写入 #打开文件,路径不对会报错 f = open(r"C:\Users\jm\Desktop\pyfile.txt","w") f.write("Hello,world!\...

python的几种矩阵相乘的公式详解

1. 同线性代数中矩阵乘法的定义: np.dot() np.dot(A, B):对于二维矩阵,计算真正意义上的矩阵乘积,同线性代数中矩阵乘法的定义。对于一维矩阵,计算两者的内积。见如下...

Python从单元素字典中获取key和value的实例

之前写代码很多时候会遇到这么一种情况:在python的字典中只有一个key/value键值对,想要获取其中的这一个元素还要写个for循环获取。 网上搜了一下,发现还有很多简单的方法: 方...

python批量查询、汉字去重处理CSV文件

CSV文件用记事本打开后一般为由逗号隔开的字符串,其处理方法用Python的代码如下。为方便各种程度的人阅读在代码中有非常详细的注释。 1.查询指定列,并保存到新的csv文件。 #...