python运用sklearn实现KNN分类算法

yipeiwu_com6年前Python基础

KNN(K-Nearest-Neighbours Classiflication)分类算法,供大家参考,具体内容如下

最简单的分类算法,易于理解和实现

实现步骤:通过选取与该点距离最近的k个样本,在这k个样本中哪一个类别的数量多,就把k归为哪一类。

注意

  • 该算法需要保存训练集的观察值,以此判定待分类数据属于哪一类
  • k需要进行自定义,一般选取k<30
  • 距离一般用欧氏距离,即​ 

通过sklearn对数据使用KNN算法进行分类

代码如下:

## 导入鸢尾花数据集
iris = datasets.load_iris()
data = iris.data[:, :2]
target = iris.target

## 区分训练集和测试集,75%的训练集和25%的测试集
train_data, test_data = train_test_split(np.c_[data, target])
## 训练并预测,其中选取k=15
clf = neighbors.KNeighborsClassifier(15, 'distance')
clf.fit(train_data[:, :2], train_data[:, 2])
Z = clf.predict(test_data[:, :2])
print '准确率:' ,clf.score(test_data[:, :2], test_data[:, 2])

colormap = dict(zip(np.unique(target), sns.color_palette()[:3]))
plt.scatter(train_data[:, 0], train_data[:, 1], edgecolors=[colormap[x] for x in train_data[:, 2]],c='', s=80, label='all_data')
plt.scatter(test_data[:, 0], test_data[:, 1], marker='^', color=[colormap[x] for x in Z], s=20, label='test_data')
plt.legend()
plt.show()

结果如下:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

通过shell+python实现企业微信预警

通过shell+python实现企业微信预警

一 注册企业微信 本文所有内容是基于2018年12月26日时的企业微信版本所做的教程。后面可能由于企业微信界面规则更改导致部分流程不一致。(大家看文章时请注意这一点) 注册企业微信必备条...

对Python发送带header的http请求方法详解

简单的header import urllib2 request = urllib2.Request('http://example.com/') request.add_he...

python使用cookie库操保存cookie详解

Cookie用于服务器实现会话,用户登录及相关功能时进行状态管理。要在用户浏览器上安装cookie,HTTP服务器向HTTP响应添加类似以下内容的HTTP报头: 复制代码 代码如下:Se...

pytorch 求网络模型参数实例

pytorch 求网络模型参数实例

用pytorch训练一个神经网络时,我们通常会很关心模型的参数总量。下面分别介绍来两种方法求模型参数 一 .求得每一层的模型参数,然后自然的可以计算出总的参数。 1.先初始化一个网络模型...

Python实现CET查分的方法

Python CET自动查询方法需要用到的python方法模块有:sys、urllib2 本文实例讲述了Python实现CET查分的方法。分享给大家供大家参考。具体实现方法如下: 复制代...