python运用sklearn实现KNN分类算法

yipeiwu_com5年前Python基础

KNN(K-Nearest-Neighbours Classiflication)分类算法,供大家参考,具体内容如下

最简单的分类算法,易于理解和实现

实现步骤:通过选取与该点距离最近的k个样本,在这k个样本中哪一个类别的数量多,就把k归为哪一类。

注意

  • 该算法需要保存训练集的观察值,以此判定待分类数据属于哪一类
  • k需要进行自定义,一般选取k<30
  • 距离一般用欧氏距离,即​ 

通过sklearn对数据使用KNN算法进行分类

代码如下:

## 导入鸢尾花数据集
iris = datasets.load_iris()
data = iris.data[:, :2]
target = iris.target

## 区分训练集和测试集,75%的训练集和25%的测试集
train_data, test_data = train_test_split(np.c_[data, target])
## 训练并预测,其中选取k=15
clf = neighbors.KNeighborsClassifier(15, 'distance')
clf.fit(train_data[:, :2], train_data[:, 2])
Z = clf.predict(test_data[:, :2])
print '准确率:' ,clf.score(test_data[:, :2], test_data[:, 2])

colormap = dict(zip(np.unique(target), sns.color_palette()[:3]))
plt.scatter(train_data[:, 0], train_data[:, 1], edgecolors=[colormap[x] for x in train_data[:, 2]],c='', s=80, label='all_data')
plt.scatter(test_data[:, 0], test_data[:, 1], marker='^', color=[colormap[x] for x in Z], s=20, label='test_data')
plt.legend()
plt.show()

结果如下:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python中functools模块的常用函数解析

1.partial 首先是partial函数,它可以重新绑定函数的可选参数,生成一个callable的partial对象: >>> int('10') # 实际上等...

如何用Python破解wifi密码过程详解

如何用Python破解wifi密码过程详解

前言 Python真的是无所不能,原因就是因为Python有数目庞大的库,无数的现成的轮子,让你做很多很多应用都非常方便。wifi跟我们的生活息息相关,无处不在。今天从WiFi连接的原理...

Centos下实现安装Python3.6和Python2共存

写在前面 centos6.8中默认自带的python版本为python2.6,那么这里需要将其改为python3 下载并解压 官方下载地址为 https://www.python.o...

django将数组传递给前台模板的方法

将数组传递给前台模板: 1. def modifyBtn(req,modifyip): print modifyip conn= MySQLdb.connect(...

python Django连接MySQL数据库做增删改查

1、下载安装MySQLdb类库http://www.djangoproject.com/r/python-mysql/2、修改settings.py 配置数据属性复制代码 代码如下:DA...