python运用sklearn实现KNN分类算法

yipeiwu_com6年前Python基础

KNN(K-Nearest-Neighbours Classiflication)分类算法,供大家参考,具体内容如下

最简单的分类算法,易于理解和实现

实现步骤:通过选取与该点距离最近的k个样本,在这k个样本中哪一个类别的数量多,就把k归为哪一类。

注意

  • 该算法需要保存训练集的观察值,以此判定待分类数据属于哪一类
  • k需要进行自定义,一般选取k<30
  • 距离一般用欧氏距离,即​ 

通过sklearn对数据使用KNN算法进行分类

代码如下:

## 导入鸢尾花数据集
iris = datasets.load_iris()
data = iris.data[:, :2]
target = iris.target

## 区分训练集和测试集,75%的训练集和25%的测试集
train_data, test_data = train_test_split(np.c_[data, target])
## 训练并预测,其中选取k=15
clf = neighbors.KNeighborsClassifier(15, 'distance')
clf.fit(train_data[:, :2], train_data[:, 2])
Z = clf.predict(test_data[:, :2])
print '准确率:' ,clf.score(test_data[:, :2], test_data[:, 2])

colormap = dict(zip(np.unique(target), sns.color_palette()[:3]))
plt.scatter(train_data[:, 0], train_data[:, 1], edgecolors=[colormap[x] for x in train_data[:, 2]],c='', s=80, label='all_data')
plt.scatter(test_data[:, 0], test_data[:, 1], marker='^', color=[colormap[x] for x in Z], s=20, label='test_data')
plt.legend()
plt.show()

结果如下:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python清理子进程机制剖析

python清理子进程机制剖析

起步 在我的印象中,python的机制会自动清理已经完成任务的子进程的。通过网友的提问,还真看到了僵尸进程。 import multiprocessing as mp import...

Python实现的生成格雷码功能示例

Python实现的生成格雷码功能示例

本文实例讲述了Python实现的生成格雷码功能。分享给大家供大家参考,具体如下: 问题 在一组数的编码中,若任意两个相邻的代码只有一位二进制数不同, 则称这种编码为格雷码(Gray Co...

为Python的Tornado框架配置使用Jinja2模板引擎的方法

tornado 默认有一个模板引擎但是功能简单(其实我能用到的都差不多)使用起来颇为麻烦, 而jinja2语法与django模板相似所以决定使用他. 下载jinja2 还是用pip 下载...

python文字转语音的实例代码分析

使用百度接口 接口地址 https://ai.baidu.com/docs#/TTS-Online-Python-SDK/top 安装接口 pip install baidu-aip...

TensorFlow在MAC环境下的安装及环境搭建

TensorFlow在MAC环境下的安装及环境搭建

给大家分享一下TensorFlow在MAC系统中的安装步骤以及环境搭建的操作流程。 TensorFlow 底层的图模型结构清晰,容易改造;支持分布式训练;可视化效果好。如果做长期项目,接...