python运用sklearn实现KNN分类算法

yipeiwu_com5年前Python基础

KNN(K-Nearest-Neighbours Classiflication)分类算法,供大家参考,具体内容如下

最简单的分类算法,易于理解和实现

实现步骤:通过选取与该点距离最近的k个样本,在这k个样本中哪一个类别的数量多,就把k归为哪一类。

注意

  • 该算法需要保存训练集的观察值,以此判定待分类数据属于哪一类
  • k需要进行自定义,一般选取k<30
  • 距离一般用欧氏距离,即​ 

通过sklearn对数据使用KNN算法进行分类

代码如下:

## 导入鸢尾花数据集
iris = datasets.load_iris()
data = iris.data[:, :2]
target = iris.target

## 区分训练集和测试集,75%的训练集和25%的测试集
train_data, test_data = train_test_split(np.c_[data, target])
## 训练并预测,其中选取k=15
clf = neighbors.KNeighborsClassifier(15, 'distance')
clf.fit(train_data[:, :2], train_data[:, 2])
Z = clf.predict(test_data[:, :2])
print '准确率:' ,clf.score(test_data[:, :2], test_data[:, 2])

colormap = dict(zip(np.unique(target), sns.color_palette()[:3]))
plt.scatter(train_data[:, 0], train_data[:, 1], edgecolors=[colormap[x] for x in train_data[:, 2]],c='', s=80, label='all_data')
plt.scatter(test_data[:, 0], test_data[:, 1], marker='^', color=[colormap[x] for x in Z], s=20, label='test_data')
plt.legend()
plt.show()

结果如下:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python中的MongoDB基本操作:连接、查询实例

MongoDB是一个基于分布式文件存储的数据库。由C++语言编写。旨在为WEB应用提供可护展的高性能数据存储解决方案。它的特点是高性能、易部署、易使用,存储数据非常方便。 MongoDB...

pandas DataFrame行或列的删除方法的实现示例

pandas DataFrame行或列的删除方法的实现示例

此文我们继续围绕DataFrame介绍相关操作。 平时在用DataFrame时候,删除操作用的不太多,基本是从源DataFrame中筛选数据,组成一个新的DataFrame再继续操作。...

Python面向对象class类属性及子类用法分析

本文实例讲述了Python面向对象class类属性及子类用法。分享给大家供大家参考,具体如下: class类属性 class Foo(object): x=1.5 foo=Foo...

对python当中不在本路径的py文件的引用详解

众所周知,如果py文件不在当前路径,那么就不能import,因此,本文介绍如下两种有效的方法: 方法1: 修改环境变量,在~/.bashrc里面进行修改,然后source ~/.bash...

Python实现的连接mssql数据库操作示例

Python实现的连接mssql数据库操作示例

本文实例讲述了Python实现的连接mssql数据库操作。分享给大家供大家参考,具体如下: 1. 目标数据sql2008 R2 ComPrject=>TestModel 2. 安...