python运用sklearn实现KNN分类算法

yipeiwu_com6年前Python基础

KNN(K-Nearest-Neighbours Classiflication)分类算法,供大家参考,具体内容如下

最简单的分类算法,易于理解和实现

实现步骤:通过选取与该点距离最近的k个样本,在这k个样本中哪一个类别的数量多,就把k归为哪一类。

注意

  • 该算法需要保存训练集的观察值,以此判定待分类数据属于哪一类
  • k需要进行自定义,一般选取k<30
  • 距离一般用欧氏距离,即​ 

通过sklearn对数据使用KNN算法进行分类

代码如下:

## 导入鸢尾花数据集
iris = datasets.load_iris()
data = iris.data[:, :2]
target = iris.target

## 区分训练集和测试集,75%的训练集和25%的测试集
train_data, test_data = train_test_split(np.c_[data, target])
## 训练并预测,其中选取k=15
clf = neighbors.KNeighborsClassifier(15, 'distance')
clf.fit(train_data[:, :2], train_data[:, 2])
Z = clf.predict(test_data[:, :2])
print '准确率:' ,clf.score(test_data[:, :2], test_data[:, 2])

colormap = dict(zip(np.unique(target), sns.color_palette()[:3]))
plt.scatter(train_data[:, 0], train_data[:, 1], edgecolors=[colormap[x] for x in train_data[:, 2]],c='', s=80, label='all_data')
plt.scatter(test_data[:, 0], test_data[:, 1], marker='^', color=[colormap[x] for x in Z], s=20, label='test_data')
plt.legend()
plt.show()

结果如下:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Flask框架模板继承实现方法分析

本文实例讲述了Flask框架模板继承实现方法。分享给大家供大家参考,具体如下: 在模板中,可能会遇到以下情况: 多个模板具有完全相同的顶部和底部内容 多个模板中具有相同的模板代...

Python学习笔记之函数的参数和返回值的使用

Python学习笔记之函数的参数和返回值的使用

01、函数参数和返回值的作用 函数根据 有没有参数 以及 有没有返回值,可以相互结合,共有四种: 无参数 无返回值 无参数 有返回值 有参数 无返回值 有参数 有返回值...

浅析Python pandas模块输出每行中间省略号问题

关于Python数据分析中pandas模块在输出的时候,每行的中间会有省略号出现,和行与行中间的省略号....问题,其他的站点(百度)中的大部分都是瞎写,根本就是复制黏贴以前的版本,你要...

Python中的Matplotlib模块入门教程

Python中的Matplotlib模块入门教程

1 关于 Matplotlib 模块 Matplotlib 是一个由 John Hunter 等开发的,用以绘制二维图形的 Python 模块。它利用了 Python 下的数值计算模块...

python自定义异常实例详解

python自定义异常实例详解          本文通过两种方法对Python 自定义异常进行讲解,第一...