python运用sklearn实现KNN分类算法

yipeiwu_com6年前Python基础

KNN(K-Nearest-Neighbours Classiflication)分类算法,供大家参考,具体内容如下

最简单的分类算法,易于理解和实现

实现步骤:通过选取与该点距离最近的k个样本,在这k个样本中哪一个类别的数量多,就把k归为哪一类。

注意

  • 该算法需要保存训练集的观察值,以此判定待分类数据属于哪一类
  • k需要进行自定义,一般选取k<30
  • 距离一般用欧氏距离,即​ 

通过sklearn对数据使用KNN算法进行分类

代码如下:

## 导入鸢尾花数据集
iris = datasets.load_iris()
data = iris.data[:, :2]
target = iris.target

## 区分训练集和测试集,75%的训练集和25%的测试集
train_data, test_data = train_test_split(np.c_[data, target])
## 训练并预测,其中选取k=15
clf = neighbors.KNeighborsClassifier(15, 'distance')
clf.fit(train_data[:, :2], train_data[:, 2])
Z = clf.predict(test_data[:, :2])
print '准确率:' ,clf.score(test_data[:, :2], test_data[:, 2])

colormap = dict(zip(np.unique(target), sns.color_palette()[:3]))
plt.scatter(train_data[:, 0], train_data[:, 1], edgecolors=[colormap[x] for x in train_data[:, 2]],c='', s=80, label='all_data')
plt.scatter(test_data[:, 0], test_data[:, 1], marker='^', color=[colormap[x] for x in Z], s=20, label='test_data')
plt.legend()
plt.show()

结果如下:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

对python同一个文件夹里面不同.py文件的交叉引用方法详解

比如有两个模块,一个aa.py,一个bb.py 代码如下: aa.py: #encoding:utf-8 import bb a=1 bb.py: #encoding:u...

使用C#配合ArcGIS Engine进行地理信息系统开发

使用C#配合ArcGIS Engine进行地理信息系统开发

简单的地图读取、展示 终于到暑假了。。。开始认真整理整理相关学习的心得体会咯~ 先把很久之前挖的关于C# 二次开发的坑给填上好了~ 这次先计划用一个月把C# ArcEngine 10.0...

Python函数的默认参数设计示例详解

在Python教程里,针对默认参数,给了一个“重要警告”的例子: def f(a, L=[]): L.append(a) return L print(f(1)) prin...

python同步两个文件夹下的内容

本文实例为大家分享了python同步两个文件夹下的内容,供大家参考,具体内容如下 import os import shutil import time import logging...

Python初学时购物车程序练习实例(推荐)

废话不多说,直接上代码 #Author:Lancy Wu product_list=[ ('Iphone',5800), ('Mac Pro',9800), ('Bike',...