python运用sklearn实现KNN分类算法

yipeiwu_com6年前Python基础

KNN(K-Nearest-Neighbours Classiflication)分类算法,供大家参考,具体内容如下

最简单的分类算法,易于理解和实现

实现步骤:通过选取与该点距离最近的k个样本,在这k个样本中哪一个类别的数量多,就把k归为哪一类。

注意

  • 该算法需要保存训练集的观察值,以此判定待分类数据属于哪一类
  • k需要进行自定义,一般选取k<30
  • 距离一般用欧氏距离,即​ 

通过sklearn对数据使用KNN算法进行分类

代码如下:

## 导入鸢尾花数据集
iris = datasets.load_iris()
data = iris.data[:, :2]
target = iris.target

## 区分训练集和测试集,75%的训练集和25%的测试集
train_data, test_data = train_test_split(np.c_[data, target])
## 训练并预测,其中选取k=15
clf = neighbors.KNeighborsClassifier(15, 'distance')
clf.fit(train_data[:, :2], train_data[:, 2])
Z = clf.predict(test_data[:, :2])
print '准确率:' ,clf.score(test_data[:, :2], test_data[:, 2])

colormap = dict(zip(np.unique(target), sns.color_palette()[:3]))
plt.scatter(train_data[:, 0], train_data[:, 1], edgecolors=[colormap[x] for x in train_data[:, 2]],c='', s=80, label='all_data')
plt.scatter(test_data[:, 0], test_data[:, 1], marker='^', color=[colormap[x] for x in Z], s=20, label='test_data')
plt.legend()
plt.show()

结果如下:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python列表解析配合if else的方法

用习惯列表解析之后会觉得超级酷,所以在尝试使用列表解析,把循环什么的写在一行里面。使用if的时候什么时候必须要有else,什么时候可以没有else一直没搞明白,直到今天!待我缓缓道来:...

Flask框架模板渲染操作简单示例

本文实例讲述了Flask框架模板渲染操作。分享给大家供大家参考,具体如下: from flask import render_template from flask import F...

安装dbus-python的简要教程

写一个 python 脚本需要用到 dbus,但因为 dbus-python 这个包并没有提供 setup.py , 所以无法通过 pip 直接安装,唯有下载源码手动编译安装一途了。...

WxPython建立批量录入框窗口

有个小项目,碰到需要批量建立输入框的需求,本文利用WxPython建立批量录入框窗口 研究了一下WxPython ,实现了这个功能。 # coding=utf-8 """ 模块标题:...

python实现简易版计算器

python实现简易版计算器

学了一周的Python,这篇文章算是为这段时间自学做的小总结。 一、Python简介        Python是一门十分优美...