python运用sklearn实现KNN分类算法

yipeiwu_com6年前Python基础

KNN(K-Nearest-Neighbours Classiflication)分类算法,供大家参考,具体内容如下

最简单的分类算法,易于理解和实现

实现步骤:通过选取与该点距离最近的k个样本,在这k个样本中哪一个类别的数量多,就把k归为哪一类。

注意

  • 该算法需要保存训练集的观察值,以此判定待分类数据属于哪一类
  • k需要进行自定义,一般选取k<30
  • 距离一般用欧氏距离,即​ 

通过sklearn对数据使用KNN算法进行分类

代码如下:

## 导入鸢尾花数据集
iris = datasets.load_iris()
data = iris.data[:, :2]
target = iris.target

## 区分训练集和测试集,75%的训练集和25%的测试集
train_data, test_data = train_test_split(np.c_[data, target])
## 训练并预测,其中选取k=15
clf = neighbors.KNeighborsClassifier(15, 'distance')
clf.fit(train_data[:, :2], train_data[:, 2])
Z = clf.predict(test_data[:, :2])
print '准确率:' ,clf.score(test_data[:, :2], test_data[:, 2])

colormap = dict(zip(np.unique(target), sns.color_palette()[:3]))
plt.scatter(train_data[:, 0], train_data[:, 1], edgecolors=[colormap[x] for x in train_data[:, 2]],c='', s=80, label='all_data')
plt.scatter(test_data[:, 0], test_data[:, 1], marker='^', color=[colormap[x] for x in Z], s=20, label='test_data')
plt.legend()
plt.show()

结果如下:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实现在线暴力破解邮箱账号密码功能示例【测试可用】

本文实例讲述了Python实现在线暴力破解邮箱账号密码功能。分享给大家供大家参考,具体如下: dic 字典格式如下(mail.txt) : username@gmail.com:pa...

Python基于scipy实现信号滤波功能

Python基于scipy实现信号滤波功能

​ 1.背景介绍 在深度学习中,有时会使用Matlab进行滤波处理,再将处理过的数据送入神经网络中。这样是一般的处理方法,但是处理起来却有些繁琐,并且有时系统难以运行Matl...

Python mutiprocessing多线程池pool操作示例

Python mutiprocessing多线程池pool操作示例

本文实例讲述了Python mutiprocessing多线程池pool操作。分享给大家供大家参考,具体如下: python — mutiprocessing 多线程 pool 脚本代...

Python模块汇总(常用第三方库)

Python模块汇总(常用第三方库)

模块 定义 计算机在开发过程中,代码越写越多,也就越难以维护,所以为了编写可维护的代码,我们会把函数进行分组,放在不同的文件里。在python里,一个.py文件就是一个模块 优点:...

Python fileinput模块使用介绍

fileinput模块提供处理一个或多个文本文件的功能,可以通过使用for循环来读取一个或多个文本文件的所有行。它的工作方式和readlines很类似,不同点在于它不是将全部的行读到列表...