python运用sklearn实现KNN分类算法

yipeiwu_com6年前Python基础

KNN(K-Nearest-Neighbours Classiflication)分类算法,供大家参考,具体内容如下

最简单的分类算法,易于理解和实现

实现步骤:通过选取与该点距离最近的k个样本,在这k个样本中哪一个类别的数量多,就把k归为哪一类。

注意

  • 该算法需要保存训练集的观察值,以此判定待分类数据属于哪一类
  • k需要进行自定义,一般选取k<30
  • 距离一般用欧氏距离,即​ 

通过sklearn对数据使用KNN算法进行分类

代码如下:

## 导入鸢尾花数据集
iris = datasets.load_iris()
data = iris.data[:, :2]
target = iris.target

## 区分训练集和测试集,75%的训练集和25%的测试集
train_data, test_data = train_test_split(np.c_[data, target])
## 训练并预测,其中选取k=15
clf = neighbors.KNeighborsClassifier(15, 'distance')
clf.fit(train_data[:, :2], train_data[:, 2])
Z = clf.predict(test_data[:, :2])
print '准确率:' ,clf.score(test_data[:, :2], test_data[:, 2])

colormap = dict(zip(np.unique(target), sns.color_palette()[:3]))
plt.scatter(train_data[:, 0], train_data[:, 1], edgecolors=[colormap[x] for x in train_data[:, 2]],c='', s=80, label='all_data')
plt.scatter(test_data[:, 0], test_data[:, 1], marker='^', color=[colormap[x] for x in Z], s=20, label='test_data')
plt.legend()
plt.show()

结果如下:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

tensorflow 用矩阵运算替换for循环 用tf.tile而不写for的方法

如下所示: # u [32,30,200] # u_logits [400,32,30] q_j_400 = [] for j in range(400): q_j_400.ap...

python操作mysql代码总结

安装模块 windows:pip install pymysql ubuntu:sudo pip3 install pymysql python操作mysql步骤 import pym...

Python中join函数简单代码示例

Python中join函数简单代码示例

本文简述的是string.join(words[, sep]),它的功能是把字符串或者列表,元组等的元素给拼接起来,返回一个字符串,和split()函数与正好相反,看下面的代码理解。 首...

通过Pandas读取大文件的实例

当数据文件过大时,由于计算机内存有限,需要对大文件进行分块读取: import pandas as pd f = open('E:/学习相关/Python/数据样例/用户侧数据/te...

Python工程师面试必备25条知识点

Python工程师面试必备25条Python知识点: 1.到底什么是Python?你可以在回答中与其他技术进行对比 下面是一些关键点: Python是一种解释型语言。这就是说,与C语言和...