python运用sklearn实现KNN分类算法

yipeiwu_com6年前Python基础

KNN(K-Nearest-Neighbours Classiflication)分类算法,供大家参考,具体内容如下

最简单的分类算法,易于理解和实现

实现步骤:通过选取与该点距离最近的k个样本,在这k个样本中哪一个类别的数量多,就把k归为哪一类。

注意

  • 该算法需要保存训练集的观察值,以此判定待分类数据属于哪一类
  • k需要进行自定义,一般选取k<30
  • 距离一般用欧氏距离,即​ 

通过sklearn对数据使用KNN算法进行分类

代码如下:

## 导入鸢尾花数据集
iris = datasets.load_iris()
data = iris.data[:, :2]
target = iris.target

## 区分训练集和测试集,75%的训练集和25%的测试集
train_data, test_data = train_test_split(np.c_[data, target])
## 训练并预测,其中选取k=15
clf = neighbors.KNeighborsClassifier(15, 'distance')
clf.fit(train_data[:, :2], train_data[:, 2])
Z = clf.predict(test_data[:, :2])
print '准确率:' ,clf.score(test_data[:, :2], test_data[:, 2])

colormap = dict(zip(np.unique(target), sns.color_palette()[:3]))
plt.scatter(train_data[:, 0], train_data[:, 1], edgecolors=[colormap[x] for x in train_data[:, 2]],c='', s=80, label='all_data')
plt.scatter(test_data[:, 0], test_data[:, 1], marker='^', color=[colormap[x] for x in Z], s=20, label='test_data')
plt.legend()
plt.show()

结果如下:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

使用Python opencv实现视频与图片的相互转换

因为最近要经常转换数据集进行实验,因此记录一下。 1、视频转图片 即为将视频解析为一帧一帧的图片: import cv2 vc=cv2.VideoCapture("/home/hqd...

python实现的简单FTP上传下载文件实例

本文实例讲述了python实现的简单FTP上传下载文件的方法。分享给大家供大家参考。具体如下: python本身自带一个FTP模块,可以实现上传下载的函数功能。 #!/usr/bin...

解决Django中多条件查询的问题

tags: django中对条件查询 一些cms项目都会使用到多条件查询,我们后端如何处理请求的条件呢? 满足一个条件 满足两个条件 满足多个条件 …………………. 这样处理起来...

python中单下划线_的常见用法总结

python中单下划线_的常见用法总结

这篇文章给大家介绍python中单下划线_,具体内容如下所示: 前言 我们在阅读源码的时候经常会看到各种单下划线_的使用,所以今天特地做一个总结,而且其实很多(不是所有)关于下划线的使用...

python3 打印输出字典中特定的某个key的方法示例

本文实例讲述了python3 打印输出字典中特定的某个key的方法。分享给大家供大家参考,具体如下: 大家都知道python中的字典里的元素是无序的,不能通过索引去找到它,今天说我下通过...