python运用sklearn实现KNN分类算法

yipeiwu_com6年前Python基础

KNN(K-Nearest-Neighbours Classiflication)分类算法,供大家参考,具体内容如下

最简单的分类算法,易于理解和实现

实现步骤:通过选取与该点距离最近的k个样本,在这k个样本中哪一个类别的数量多,就把k归为哪一类。

注意

  • 该算法需要保存训练集的观察值,以此判定待分类数据属于哪一类
  • k需要进行自定义,一般选取k<30
  • 距离一般用欧氏距离,即​ 

通过sklearn对数据使用KNN算法进行分类

代码如下:

## 导入鸢尾花数据集
iris = datasets.load_iris()
data = iris.data[:, :2]
target = iris.target

## 区分训练集和测试集,75%的训练集和25%的测试集
train_data, test_data = train_test_split(np.c_[data, target])
## 训练并预测,其中选取k=15
clf = neighbors.KNeighborsClassifier(15, 'distance')
clf.fit(train_data[:, :2], train_data[:, 2])
Z = clf.predict(test_data[:, :2])
print '准确率:' ,clf.score(test_data[:, :2], test_data[:, 2])

colormap = dict(zip(np.unique(target), sns.color_palette()[:3]))
plt.scatter(train_data[:, 0], train_data[:, 1], edgecolors=[colormap[x] for x in train_data[:, 2]],c='', s=80, label='all_data')
plt.scatter(test_data[:, 0], test_data[:, 1], marker='^', color=[colormap[x] for x in Z], s=20, label='test_data')
plt.legend()
plt.show()

结果如下:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python基于PycURL实现POST的方法

本文实例讲述了Python基于PycURL实现POST的方法。分享给大家供大家参考。具体如下: import pycurl import StringIO import urllib...

关于python中plt.hist参数的使用详解

关于python中plt.hist参数的使用详解

如下所示: matplotlib.pyplot.hist( x, bins=10, range=None, normed=False, weights=None, c...

python logging添加filter教程

例子一 def filter(self, record): """Our custom record filtering logic. Built-in filter...

python执行使用shell命令方法分享

1. os.system(shell_command) 直接在终端输出执行结果,返回执行状态0,1 此函数会启动子进程,在子进程中执行command,并返回command命令执行完毕后的...

Python使用Dijkstra算法实现求解图中最短路径距离问题详解

本文实例讲述了Python使用Dijkstra算法实现求解图中最短路径距离问题。分享给大家供大家参考,具体如下: 这里继续前面一篇《Python基于Floyd算法求解最短路径距离问题》的...