python实现广度优先搜索过程解析

yipeiwu_com6年前Python基础

广度优先搜索

适用范围: 无权重的图,与深度优先搜索相比,深度优先搜索法占内存少但速度较慢,广度优先搜索算法占内存多但速度较快

复杂度: 时间复杂度为O(V+E),V为顶点数,E为边数

思路

广度优先搜索是以层为顺序,将某一层上的所有节点都搜索到了之后才向下一层搜索;

代码

from collections import deque

#解决从你的人际关系网中找到芒果销售商的问题
#使用字典表示映射关系
graph = {} 
graph["you"] = ["alice", "bob", "claire"] 
graph["bob"] = ["anuj", "peggy"] 
graph["alice"] = ["peggy"] 
graph["claire"] = ["thom", "jonny"] 
graph["anuj"] = [] 
graph["peggy"] = [] 
graph["thom"] = [] 
graph["jonny"] = []

#判断是否是要查找的目标 
def is_target_node(name):
   return name[-1] == 'm'

#实现广度优先搜索算法 
def search(name):
   search_queue = deque() #创建一个队列
   search_queue += graph[name] 
   searched = [] #记录用于检查过的人
   while search_queue: #只要队列不为空
     person = search_queue.popleft() #就取出其中的第一个人
     if not person in searched: #这个人没有被检查过
       if is_target_node(person): #判断这个人是否是要查找的销售商
         print(person + " is target node!")
         return True
       else:
         search_queue += graph[person] #如果这个人不是,就将这个人的朋友压入队列
         searched.append(person) #将这个人追加到已检查过的字典中
   return False

#调用方法
search("you")

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

浅谈Python中的全局锁(GIL)问题

CPU-bound(计算密集型) 和I/O bound(I/O密集型) 计算密集型任务(CPU-bound) 的特点是要进行大量的计算,占据着主要的任务,消耗CPU资源,一直处于满负荷状...

Scrapy的简单使用教程

Scrapy的简单使用教程

在这篇入门教程中,我们假定你已经安装了python。如果你还没有安装,那么请参考安装指南。 首先第一步:进入开发环境,workon article_spider 进入这个环境:...

Python 3.x 安装opencv+opencv_contrib的操作方法

Note:这篇文章不会包含任何的技术解答,仅是安装教程。同样不保证对所有可能的安装中遇到的问题都能适用。不过如果不幸又幸运地遇到了跟我一样的问题,我希望你能从我这里找到解决方案。 前言...

将python2.7添加进64位系统的注册表方式

解决问题:python2.7无法在注册表中被识别,即在安装NumPy和SciPy等出现“python version 2.7 required, which was not found...

浅谈Python Opencv中gamma变换的使用详解

伽马变换就是用来图像增强,其提升了暗部细节,简单来说就是通过非线性变换,让图像从暴光强度的线性响应变得更接近人眼感受的响应,即将漂白(相机曝光)或过暗(曝光不足)的图片,进行矫正。 伽马...