pandas中遍历dataframe的每一个元素的实现

yipeiwu_com6年前Python基础

假如有一个需求场景需要遍历一个csv或excel中的每一个元素,判断这个元素是否含有某个关键字

那么可以用python的pandas库来实现。

方法一:

pandas的dataframe有一个很好用的函数applymap,它可以把某个函数应用到dataframe的每一个元素上,而且比常规的for循环去遍历每个元素要快很多。如下是相关代码:

import pandas as pd
data = [["str","ewt","earw"],["agter","awetg","aeorgh"]]
dataframe1 = pd.DataFrame(data=data,columns=["name1","name2","name3"])
print(dataframe1)
bool_array = dataframe1.applymap(lambda x:"w" in x)
out_array = dataframe1[bool_array]
print(out_array)
 
>>
  name1 name2  name3
0  str  ewt  earw
1 agter awetg aeorgh
 
 name1 name2 name3
0  NaN  ewt earw
1  NaN awetg  NaN

代码中,bool_array为一个逻辑矩阵,满足条件元素的位置为true,否则为false。然后通过逻辑矩阵去索引dataframe1,就可以得出满足条件的元素。

方法二:

第一种方法是一次性遍历每个元素,这样不好分column去处理,那换一种方式可以每次遍历一列

#接上面代码
file_columns = dataframe1.columns.tolist()
for column in file_columns:
  bool_index = dataframe1[column].str.contains("w")
  filter_data = dataframe1[column][bool_index]
  print(filter_data)
 
>>
Series([], Name: name1, dtype: object)
0   ewt
1  awetg
Name: name2, dtype: object
0  earw
Name: name3, dtype: object

代码种 Series.str.contains 是 Series 才有的一个操作。另外,filter_data只输出每一列中满足条件的元素,更方便下一步的操作。

简单说明:

针对pandas的dataframe和series,有强大的高阶函数:apply,applymap和map函数等,它们比简单的for循环要快很多,善用这些高阶函数会让你事半功倍。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Django自定义过滤器定义与用法示例

本文实例讲述了Django自定义过滤器定义与用法。分享给大家供大家参考,具体如下: 一、自定义过滤器的介绍 前面我们就介绍过过滤器其实就是一个函数,把要过来的字段传递到一个函数内,进行加...

在python中利用GDAL对tif文件进行读写的方法

利用GDAL库对tif影像进行读取 示例代码默认波段为[B、G、R、NIR的顺序,且为四个波段] import gdal def readTif(fileName): datas...

用Python+OpenCV对比图像质量的几种方法

用Python+OpenCV对比图像质量的几种方法

前言 图片的本质就是大量像素在二维平面上的组合,每个像素点用数字化方式记录颜色。可以直观的想象,一张图片就是一个巨大的电子栅格,每个格子内有一盏灯泡,这个灯泡可以变换256的三次方种颜色...

浅析python打包工具distutils、setuptools

浅析python打包工具distutils、setuptools

python中安装包的方式有很多种: 源码包:python setup.py install 在线安装:pip install 包名(linux) / easy_install...

详解Swift中属性的声明与作用

一、引言 属性将值与类,结构体,枚举进行关联。Swift中的属性分为存储属性和计算属性两种,存储属性用于存储一个值,其只能用于类与结构体,计算属性用于计算一个值,其可以用于类,结构体和枚...