pandas中遍历dataframe的每一个元素的实现

yipeiwu_com5年前Python基础

假如有一个需求场景需要遍历一个csv或excel中的每一个元素,判断这个元素是否含有某个关键字

那么可以用python的pandas库来实现。

方法一:

pandas的dataframe有一个很好用的函数applymap,它可以把某个函数应用到dataframe的每一个元素上,而且比常规的for循环去遍历每个元素要快很多。如下是相关代码:

import pandas as pd
data = [["str","ewt","earw"],["agter","awetg","aeorgh"]]
dataframe1 = pd.DataFrame(data=data,columns=["name1","name2","name3"])
print(dataframe1)
bool_array = dataframe1.applymap(lambda x:"w" in x)
out_array = dataframe1[bool_array]
print(out_array)
 
>>
  name1 name2  name3
0  str  ewt  earw
1 agter awetg aeorgh
 
 name1 name2 name3
0  NaN  ewt earw
1  NaN awetg  NaN

代码中,bool_array为一个逻辑矩阵,满足条件元素的位置为true,否则为false。然后通过逻辑矩阵去索引dataframe1,就可以得出满足条件的元素。

方法二:

第一种方法是一次性遍历每个元素,这样不好分column去处理,那换一种方式可以每次遍历一列

#接上面代码
file_columns = dataframe1.columns.tolist()
for column in file_columns:
  bool_index = dataframe1[column].str.contains("w")
  filter_data = dataframe1[column][bool_index]
  print(filter_data)
 
>>
Series([], Name: name1, dtype: object)
0   ewt
1  awetg
Name: name2, dtype: object
0  earw
Name: name3, dtype: object

代码种 Series.str.contains 是 Series 才有的一个操作。另外,filter_data只输出每一列中满足条件的元素,更方便下一步的操作。

简单说明:

针对pandas的dataframe和series,有强大的高阶函数:apply,applymap和map函数等,它们比简单的for循环要快很多,善用这些高阶函数会让你事半功倍。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实现的计数排序算法示例

Python实现的计数排序算法示例

本文实例讲述了Python实现的计数排序算法。分享给大家供大家参考,具体如下: 计数排序是一种非常快捷的稳定性强的排序方法,时间复杂度O(n+k),其中n为要排序的数的个数,k为要排序的...

Python实现的拉格朗日插值法示例

本文实例讲述了Python实现的拉格朗日插值法。分享给大家供大家参考,具体如下: 拉格朗日插值简单介绍 拉格朗日插值法是以法国十八世纪数学家约瑟夫·拉格朗日命名的一种多项式插值方法。 许...

Windows下为Python安装Matplotlib模块

Windows下为Python安装Matplotlib模块

  这玩意反反复复弄了一晚上,这里详细叙述下如何安装,肯定会对大家有所帮助。首先默认大家都装了Python,这个从官网下基本不会有任何难度。   (1)Setuptools的安装   为...

python中报错"json.decoder.JSONDecodeError: Expecting value:"的解决

在学习python语言中用json库解析网络数据时,我遇到了两个编译错误:json.decoder.JSONDecodeError: Expecting property name en...

anaconda如何查看并管理python环境

anaconda如何查看并管理python环境

Anaconda是Python的一个开源发行版本,主要面向科学计算,预装了丰富强大的库。 使用Anaconda可以轻松管理多个版本的Python环境。 Download:https://...