pandas中遍历dataframe的每一个元素的实现

yipeiwu_com5年前Python基础

假如有一个需求场景需要遍历一个csv或excel中的每一个元素,判断这个元素是否含有某个关键字

那么可以用python的pandas库来实现。

方法一:

pandas的dataframe有一个很好用的函数applymap,它可以把某个函数应用到dataframe的每一个元素上,而且比常规的for循环去遍历每个元素要快很多。如下是相关代码:

import pandas as pd
data = [["str","ewt","earw"],["agter","awetg","aeorgh"]]
dataframe1 = pd.DataFrame(data=data,columns=["name1","name2","name3"])
print(dataframe1)
bool_array = dataframe1.applymap(lambda x:"w" in x)
out_array = dataframe1[bool_array]
print(out_array)
 
>>
  name1 name2  name3
0  str  ewt  earw
1 agter awetg aeorgh
 
 name1 name2 name3
0  NaN  ewt earw
1  NaN awetg  NaN

代码中,bool_array为一个逻辑矩阵,满足条件元素的位置为true,否则为false。然后通过逻辑矩阵去索引dataframe1,就可以得出满足条件的元素。

方法二:

第一种方法是一次性遍历每个元素,这样不好分column去处理,那换一种方式可以每次遍历一列

#接上面代码
file_columns = dataframe1.columns.tolist()
for column in file_columns:
  bool_index = dataframe1[column].str.contains("w")
  filter_data = dataframe1[column][bool_index]
  print(filter_data)
 
>>
Series([], Name: name1, dtype: object)
0   ewt
1  awetg
Name: name2, dtype: object
0  earw
Name: name3, dtype: object

代码种 Series.str.contains 是 Series 才有的一个操作。另外,filter_data只输出每一列中满足条件的元素,更方便下一步的操作。

简单说明:

针对pandas的dataframe和series,有强大的高阶函数:apply,applymap和map函数等,它们比简单的for循环要快很多,善用这些高阶函数会让你事半功倍。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python中出现IndentationError:unindent does not match any outer indentation level错误的解决方法

Python中出现IndentationError:unindent does not match any outer indentation level错误的解决方法

今天在网上copy的一段代码,代码很简单,每行看起来该缩进的都缩进了,运行的时候出现了如下错误:  【解决过程】  1.对于此错误,最常见的原因是,的确没有缩进。...

python的pip安装以及使用教程

python的pip安装以及使用教程

pip的安装,以及使用pip安装包的方法,记录如下,分享给大家: —–安装python的时候勾选了下载pip,不知道为什么没下载。然后就偷懒想着需要哪个包再单独去下载就好了,然后!!!每...

Python实现霍夫圆和椭圆变换代码详解

Python实现霍夫圆和椭圆变换代码详解

在极坐标中,圆的表示方式为: x=x0+rcosθ y=y0+rsinθ 圆心为(x0,y0),r为半径,θ为旋转度数,值范围为0-359 如果给定圆心点和半径,则其它点是否在圆上,我们...

使用Python的turtle模块画图的方法

使用Python的turtle模块画图的方法

简介:turtle是一个简单的绘图工具。它提供了一个海龟,你可以把它理解为一个机器人,只听得懂有限的指令。 1.在文件头写上如下行,这能让我们在语句中插入中文 #-*-coding:ut...

基于python 二维数组及画图的实例详解

1、二维数组取值 注:不管是二维数组,还是一维数组,数组里的数据类型要一模一样,即若是数值型,全为数值型 #二维数组 import numpy as np list1=[[1.73...