python3常用的数据清洗方法(小结)

yipeiwu_com6年前Python基础

首先载入各种包:

import pandas as pd
import numpy as np
from collections import Counter
from sklearn import preprocessing
from matplotlib import pyplot as plt
%matplotlib inline
import seaborn as sns 
plt.rcParams['font.sans-serif'] = ['SimHei'] # 中文字体设置-黑体
plt.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题
sns.set(font='SimHei') # 解决Seaborn中文显示问题

读入数据:这里数据是编造的

data=pd.read_excel('dummy.xlsx')

本案例的真实数据是这样的:

这里写图片描述 

对数据进行多方位的查看:

实际情况中可能会有很多行,一般用head()看数据基本情况

data.head() #查看长啥样
data.shape #查看数据的行列大小
data.describe()

这里写图片描述

这里写图片描述

#列级别的判断,但凡某一列有null值或空的,则为真
data.isnull().any()

#将列中为空或者null的个数统计出来,并将缺失值最多的排前
total = data.isnull().sum().sort_values(ascending=False)
print(total)


#输出百分比:
percent =(data.isnull().sum()/data.isnull().count()).sort_values(ascending=False)
missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent'])
missing_data.head(20)

这里写图片描述

也可以从视觉上直观查看缺失值:

import missingno
missingno.matrix(data)
data=data.dropna(thresh=data.shape[0]*0.5,axis=1) #至少有一半以上是非空的列筛选出来
#如果某一行全部都是na才删除:
data.dropna(axis=0,how='all') 

这里写图片描述

#默认情况下是只保留没有空值的行
data=data.dropna(axis=0) 

这里写图片描述

#统计重复记录数
data.duplicated().sum()
data.drop_duplicates()

对连续型数据和离散型数据分开处理:

data.columns
#第一步,将整个data的连续型字段和离散型字段进行归类
id_col=['姓名']
cat_col=['学历','学校'] #这里是离散型无序,如果有序,请参考map用法,一些博客上有写
cont_col=['成绩','能力'] #这里是数值型
print (data[cat_col]) #这里是离散型的数据部分
print (data[cont_col])#这里是连续性数据部分

对于离散型部分:

#计算出现的频次
for i in cat_col:
  print (pd.Series(data[i]).value_counts())
  plt.plot(data[i])

这里写图片描述

#对于离散型数据,对其获取哑变量
dummies=pd.get_dummies(data[cat_col])
dummies

这里写图片描述 

对于连续型部分:

#对于连续型数据的大概统计:
data[cont_col].describe()

#对于连续型数据,看偏度,一般大于0.75的数值做一个log转化,使之尽量符合正态分布,因为很多模型的假设数据是服从正态分布的
skewed_feats = data[cont_col].apply(lambda x: (x.dropna()).skew() )#compute skewness
skewed_feats = skewed_feats[skewed_feats > 0.75]
skewed_feats = skewed_feats.index
data[skewed_feats] = np.log1p(data[skewed_feats])
skewed_feats
#对于连续型数据,对其进行标准化
scaled=preprocessing.scale(data[cont_col])
scaled=pd.DataFrame(scaled,columns=cont_col)
scaled

这里写图片描述

m=dummies.join(scaled)
data_cleaned=data[id_col].join(m)
data_cleaned

这里写图片描述 

看变量之间的相关性:

data_cleaned.corr()

这里写图片描述

#以下是相关性的热力图,方便肉眼看
def corr_heat(df):
  dfData = abs(df.corr())
  plt.subplots(figsize=(9, 9)) # 设置画面大小
  sns.heatmap(dfData, annot=True, vmax=1, square=True, cmap="Blues")
  # plt.savefig('./BluesStateRelation.png')
  plt.show()
corr_heat(data_cleaned)

这里写图片描述

如果有觉得相关性偏高的视情况删减某些变量。

#取出与某个变量(这里指能力)相关性最大的前四个,做出热点图表示
k = 4 #number of variables for heatmap
cols = corrmat.nlargest(k, '能力')['能力'].index
cm = np.corrcoef(data_cleaned[cols].values.T)
sns.set(font_scale=1.25)
hm = sns.heatmap(cm, cbar=True, annot=True, square=True, fmt='.2f',   annot_kws={'size': 10}, yticklabels=cols.values,  xticklabels=cols.values)
plt.show()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

利用python获得时间的实例说明

复制代码 代码如下:import time  print time.time()  print time.localtime(time.time())  p...

python使用folium库绘制地图点击框

python使用folium库绘制地图点击框

python使用folium 库生成地图网页的具体代码,供大家参考,具体内容如下 folium 官网 import folium import pandas as pd def...

Python网络编程 Python套接字编程

Python网络编程 Python套接字编程

Python 提供了两个级别访问的网络服务。 低级别的网络服务支持基本的 Socket,它提供了标准的 BSD Sockets API,可以访问底层操作系统Socket接口的全部方法。...

基于python的七种经典排序算法(推荐)

基于python的七种经典排序算法(推荐)

一、排序的基本概念和分类 所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。排序算法,就是如何使得记录按照要求排列的方法。 排序的稳定性: 经过某...

Python 给某个文件名添加时间戳的方法

问题描述: 1、(先添加时间戳,再复制移动,两个文件加下面的文件名都被修改)将 /home/kangle/webdata/JPEGImages 路径下的111.jpg文件添加当前时刻的时...