python3常用的数据清洗方法(小结)

yipeiwu_com5年前Python基础

首先载入各种包:

import pandas as pd
import numpy as np
from collections import Counter
from sklearn import preprocessing
from matplotlib import pyplot as plt
%matplotlib inline
import seaborn as sns 
plt.rcParams['font.sans-serif'] = ['SimHei'] # 中文字体设置-黑体
plt.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题
sns.set(font='SimHei') # 解决Seaborn中文显示问题

读入数据:这里数据是编造的

data=pd.read_excel('dummy.xlsx')

本案例的真实数据是这样的:

这里写图片描述 

对数据进行多方位的查看:

实际情况中可能会有很多行,一般用head()看数据基本情况

data.head() #查看长啥样
data.shape #查看数据的行列大小
data.describe()

这里写图片描述

这里写图片描述

#列级别的判断,但凡某一列有null值或空的,则为真
data.isnull().any()

#将列中为空或者null的个数统计出来,并将缺失值最多的排前
total = data.isnull().sum().sort_values(ascending=False)
print(total)


#输出百分比:
percent =(data.isnull().sum()/data.isnull().count()).sort_values(ascending=False)
missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent'])
missing_data.head(20)

这里写图片描述

也可以从视觉上直观查看缺失值:

import missingno
missingno.matrix(data)
data=data.dropna(thresh=data.shape[0]*0.5,axis=1) #至少有一半以上是非空的列筛选出来
#如果某一行全部都是na才删除:
data.dropna(axis=0,how='all') 

这里写图片描述

#默认情况下是只保留没有空值的行
data=data.dropna(axis=0) 

这里写图片描述

#统计重复记录数
data.duplicated().sum()
data.drop_duplicates()

对连续型数据和离散型数据分开处理:

data.columns
#第一步,将整个data的连续型字段和离散型字段进行归类
id_col=['姓名']
cat_col=['学历','学校'] #这里是离散型无序,如果有序,请参考map用法,一些博客上有写
cont_col=['成绩','能力'] #这里是数值型
print (data[cat_col]) #这里是离散型的数据部分
print (data[cont_col])#这里是连续性数据部分

对于离散型部分:

#计算出现的频次
for i in cat_col:
  print (pd.Series(data[i]).value_counts())
  plt.plot(data[i])

这里写图片描述

#对于离散型数据,对其获取哑变量
dummies=pd.get_dummies(data[cat_col])
dummies

这里写图片描述 

对于连续型部分:

#对于连续型数据的大概统计:
data[cont_col].describe()

#对于连续型数据,看偏度,一般大于0.75的数值做一个log转化,使之尽量符合正态分布,因为很多模型的假设数据是服从正态分布的
skewed_feats = data[cont_col].apply(lambda x: (x.dropna()).skew() )#compute skewness
skewed_feats = skewed_feats[skewed_feats > 0.75]
skewed_feats = skewed_feats.index
data[skewed_feats] = np.log1p(data[skewed_feats])
skewed_feats
#对于连续型数据,对其进行标准化
scaled=preprocessing.scale(data[cont_col])
scaled=pd.DataFrame(scaled,columns=cont_col)
scaled

这里写图片描述

m=dummies.join(scaled)
data_cleaned=data[id_col].join(m)
data_cleaned

这里写图片描述 

看变量之间的相关性:

data_cleaned.corr()

这里写图片描述

#以下是相关性的热力图,方便肉眼看
def corr_heat(df):
  dfData = abs(df.corr())
  plt.subplots(figsize=(9, 9)) # 设置画面大小
  sns.heatmap(dfData, annot=True, vmax=1, square=True, cmap="Blues")
  # plt.savefig('./BluesStateRelation.png')
  plt.show()
corr_heat(data_cleaned)

这里写图片描述

如果有觉得相关性偏高的视情况删减某些变量。

#取出与某个变量(这里指能力)相关性最大的前四个,做出热点图表示
k = 4 #number of variables for heatmap
cols = corrmat.nlargest(k, '能力')['能力'].index
cm = np.corrcoef(data_cleaned[cols].values.T)
sns.set(font_scale=1.25)
hm = sns.heatmap(cm, cbar=True, annot=True, square=True, fmt='.2f',   annot_kws={'size': 10}, yticklabels=cols.values,  xticklabels=cols.values)
plt.show()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python实现批量获取指定文件夹下的所有文件的厂商信息

本文实例讲述了python实现批量获取指定文件夹下的所有文件的厂商信息的方法。分享给大家供大家参考。具体如下: 功能代码如下: import os, string, shutil,r...

python 使用socket传输图片视频等文件的实现方式

在开发一些需要网络通信的应用中,经常会用到各种网络协议进行通信,博主在开发实验室的机器人的时候就遇到了需要把机器人上采集到的图片传回服务器进行处理识别,在python下的实现方式如下(只...

Python判断值是否在list或set中的性能对比分析

本文实例对比分析了Python判断值是否在list或set中的执行性能。分享给大家供大家参考,具体如下: 判断值是否在set集合中的速度明显要比list快的多, 因为查找set用到了ha...

Python中尝试多线程编程的一个简明例子

Python中尝试多线程编程的一个简明例子

综述     多线程是程序设计中的一个重要方面,尤其是在服务器Deamon程序方面。无论何种系统,线程调度的开销都比传统的进程要快得多。   Py...

从DataFrame中提取出Series或DataFrame对象的方法

如下所示: df = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'b'],        ...