pytorch torch.expand和torch.repeat的区别详解

yipeiwu_com5年前Python基础

1.torch.expand

函数返回张量在某一个维度扩展之后的张量,就是将张量广播到新形状。函数对返回的张量不会分配新内存,即在原始张量上返回只读视图,返回的张量内存是不连续的。类似于numpy中的broadcast_to函数的作用。如果希望张量内存连续,可以调用contiguous函数。

例子:

import torch

x = torch.tensor([1, 2, 3, 4])
xnew = x.expand(2, 4)
print(xnew)

输出:

tensor([[1, 2, 3, 4],
        [1, 2, 3, 4]])

2.torch.repeat

torch.repeat用法类似np.tile,就是将原矩阵横向、纵向地复制。与torch.expand不同的是torch.repeat返回的张量在内存中是连续的。

例子1:

将张量横向的复制

import torch

x = torch.tensor([1, 2, 3])
xnew = x.repeat(1,3)
print(xnew)

输出:

tensor([[1, 2, 3, 1, 2, 3, 1, 2, 3]])

例子2:

将张量纵向的复制

import torch

x = torch.tensor([1, 2, 3])
xnew = x.repeat(3,1)
print(xnew)

输出:

tensor([[1, 2, 3],
        [1, 2, 3],
        [1, 2, 3]])

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

PYTHON基础-时间日期处理小结

步骤: 1. 掌握几种对象及其关系 2. 了解每类对象的基本操作方法 3. 通过转化关系转化 涉及对象 1. datetime >>> import datetim...

Python 快速实现CLI 应用程序的脚手架

Python 快速实现CLI 应用程序的脚手架

今天跟大家分享一下如何快速实现一个Python CLI应用程序的脚手架,之所以会做这个是因为当时需要做一个运维的小工具希望用命令行的方式来使用,但是搜遍网上很多资料都没有系统讲解从开发、...

在Django框架中编写Context处理器的方法

写Context处理器的一些建议 编写处理器的一些建议:     使每个context处理器完成尽可能小的功能。 使用多个处理器是很容易的,所以你可以根据逻...

Python实现在tkinter中使用matplotlib绘制图形的方法示例

Python实现在tkinter中使用matplotlib绘制图形的方法示例

本文实例讲述了Python实现在tkinter中使用matplotlib绘制图形的方法。分享给大家供大家参考,具体如下: 一. 代码: # coding=utf-8 import s...

关于PyTorch 自动求导机制详解

关于PyTorch 自动求导机制详解

自动求导机制 从后向中排除子图 每个变量都有两个标志:requires_grad和volatile。它们都允许从梯度计算中精细地排除子图,并可以提高效率。 requires_grad 如...