详解Python中打乱列表顺序random.shuffle()的使用方法

yipeiwu_com5年前Python基础

之前自己一直使用random中 randint生成随机数以及使用for将列表中的数据遍历一次。

现在有个需求需要将列表的次序打乱,或者也可以这样理解:

【需求】将一个容器中的数据每次随机逐个遍历一遍。

random.shuffle()方法提供了完美的解决方案。

不会生成新的列表,只是将原列表的次序打乱

# shuffle()使用样例
import random

x = [i for i in range(10)]
print(x)
random.shuffle(x)
print(x)

源码及注释(个人翻译注释)

def shuffle(self, x, random=None):
  """Shuffle list x in place, and return None.
  原位打乱列表,不生成新的列表。

  Optional argument random is a 0-argument
  function returning a random float in [0.0, 1.0); 
  if it is the default None, 
  the standard random.random will be used.
 可选参数random是一个从0到参数的函数,返回[0.0,1.0)中的随机浮点;
 如果random是缺省值None,则将使用标准的random.random()。
  """

  if random is None:
    randbelow = self._randbelow
    for i in reversed(range(1, len(x))):
      # pick an element in x[:i+1] with which to exchange x[i]
      j = randbelow(i + 1)
      x[i], x[j] = x[j], x[i]
  else:
    _int = int
    for i in reversed(range(1, len(x))):
      # pick an element in x[:i+1] with which to exchange x[i]
      j = _int(random() * (i + 1))
      x[i], x[j] = x[j], x[i]

random 中其他的方法

class Random(_random.Random):

  ## -------------------- integer methods -------------------
  def randrange(self, start, stop=None, step=1, _int=int):

  def randint(self, a, b):

  def _randbelow(self, n, int=int, maxsize=1 << BPF, type=type,
          Method=_MethodType, BuiltinMethod=_BuiltinMethodType):

  ## -------------------- sequence methods -------------------
  def choice(self, seq):

  def shuffle(self, x, random=None):

  def sample(self, population, k):

  def choices(self, population, weights=None, *, cum_weights=None, k=1):

  ## -------------------- uniform distribution -------------------
  def uniform(self, a, b):

  ## -------------------- triangular --------------------
  def triangular(self, low=0.0, high=1.0, mode=None):

  ## -------------------- normal distribution --------------------
  def normalvariate(self, mu, sigma):

  ## -------------------- lognormal distribution --------------------
  def lognormvariate(self, mu, sigma):

  ## -------------------- exponential distribution --------------------
  def expovariate(self, lambd):

  ## -------------------- von Mises distribution --------------------
  def vonmisesvariate(self, mu, kappa):

  ## -------------------- gamma distribution --------------------
  def gammavariate(self, alpha, beta):

  ## -------------------- Gauss (faster alternative) --------------------
  def gauss(self, mu, sigma):

  def betavariate(self, alpha, beta):

  ## -------------------- Pareto --------------------
  def paretovariate(self, alpha):

  ## -------------------- Weibull --------------------
  def weibullvariate(self, alpha, beta):

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

学习python之编写简单乘法口诀表实现代码

实现代码一、 #!/usr/bin/python x,y=9,9 lst=[(x,y,str(y)+'X'+str(x)+'='+str(x*y)) fo...

Python双精度浮点数运算并分行显示操作示例

Python双精度浮点数运算并分行显示操作示例

本文实例讲述了Python双精度浮点数运算并分行显示操作。分享给大家供大家参考,具体如下: #coding=utf8 def doubleType(): ''''' Pyth...

一道python走迷宫算法题

一道python走迷宫算法题

前几天逛博客时看到了这样一道问题,感觉比较有趣,就自己思考了下方案顺便用python实现了一下。题目如下: 用一个二维数组表示一个简单的迷宫,用0表示通路,用1表示阻断,老鼠在每个点上可...

Python中实现单例模式的n种方式和原理

在Python中如何实现单例模式?这可以说是一个经典的Python面试题了。这回我们讲讲实现Python中实现单例模式的n种方式,和它的原理。 什么是单例模式 维基百科 中说: 单例模式...

Pytorch 神经网络—自定义数据集上实现教程

Pytorch 神经网络—自定义数据集上实现教程

第一步、导入需要的包 import os import scipy.io as sio import numpy as np import torch import torch.nn...