Python numpy线性代数用法实例解析

yipeiwu_com6年前Python基础

这篇文章主要介绍了Python numpy线性代数用法实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

numpy中线性代数用法

矩阵乘法

>>> import numpy as np
>>> x=np.array([[1,2,3],[4,5,6]])
>>> y=np.array([[7,8],[-1,7],[8,9]])
>>> x
array([[1, 2, 3],
    [4, 5, 6]])
>>> y
array([[ 7, 8],
    [-1, 7],
    [ 8, 9]])
>>> x.dot(y)
array([[ 29, 49],
    [ 71, 121]])
>>> np.dot(x,y)
array([[ 29, 49],
    [ 71, 121]])

计算点积

>>> a=np.array([[1,2],[3,4]])
>>> b=np.array([[11,12],[12,13]])
>>> np.vdot(a,b)
123

计算的公式是

result=1*11+2*12+3*12+4*13

计算内积

>>> np.inner(np.array([1,2,3]),np.array([0,1,0]))
2

计算公式

result=1*0+2*1+3*0

计算行列式

>>> np.inner(np.array([1,2,3]),np.array([0,1,0]))
2
>>> a=np.array([[1,2],[3,4]])
>>> np.linalg.det(a)
-2.0000000000000004

求线性方程的解

x + y + z = 6
2y + 5z = -4
2x + 5y - z = 27

矩阵表示

>>> import numpy as np
>>> a = np.array([[1,1,1],[0,2,5],[2,5,-1]])
>>> ainv = np.linalg.inv(a)#求矩阵的逆
>>> b = np.array([[6],[-4],[27]])
>>> x = np.linalg.solve(a,b)#求解需要A-1和B
>>> x
array([[ 5.],
    [ 3.],
    [-2.]])
>>>

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

VScode编写第一个Python程序HelloWorld步骤

VScode编写第一个Python程序HelloWorld步骤

一、软件下载与安装 VScode下载地址:https://code.visualstudio.com/ VScode的github项目地址(本文用不到):https://github....

python制作一个桌面便签软件

# 2014.10.15 更新了memo.zip, 网盘的exe:修复:1.隔日启动不能正常加载json,加入:1.隐藏任务栏图标,2.通过垃圾桶进行窗口移动。 # 2014.10.8...

使用python搭建Django应用程序步骤及版本冲突问题解决

使用python搭建Django应用程序步骤及版本冲突问题解决

首先你要确保你机器上面安装了python,其次,你还要确保你上面安装了Django。接下来,才能进入到搭建第一个Django应用程序很简单的操作,即在windows终端输入代码:复制代码...

Python的gevent框架的入门教程

Python通过yield提供了对协程的基本支持,但是不完全。而第三方的gevent为Python提供了比较完善的协程支持。 gevent是第三方库,通过greenlet实现协程,其基本...

python 递归深度优先搜索与广度优先搜索算法模拟实现

python 递归深度优先搜索与广度优先搜索算法模拟实现

 一、递归原理小案例分析 (1)# 概述 递归:即一个函数调用了自身,即实现了递归 凡是循环能做到的事,递归一般都能做到! (2)# 写递归的过程 1、写出临界条件 2、找出...