Python numpy线性代数用法实例解析

yipeiwu_com6年前Python基础

这篇文章主要介绍了Python numpy线性代数用法实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

numpy中线性代数用法

矩阵乘法

>>> import numpy as np
>>> x=np.array([[1,2,3],[4,5,6]])
>>> y=np.array([[7,8],[-1,7],[8,9]])
>>> x
array([[1, 2, 3],
    [4, 5, 6]])
>>> y
array([[ 7, 8],
    [-1, 7],
    [ 8, 9]])
>>> x.dot(y)
array([[ 29, 49],
    [ 71, 121]])
>>> np.dot(x,y)
array([[ 29, 49],
    [ 71, 121]])

计算点积

>>> a=np.array([[1,2],[3,4]])
>>> b=np.array([[11,12],[12,13]])
>>> np.vdot(a,b)
123

计算的公式是

result=1*11+2*12+3*12+4*13

计算内积

>>> np.inner(np.array([1,2,3]),np.array([0,1,0]))
2

计算公式

result=1*0+2*1+3*0

计算行列式

>>> np.inner(np.array([1,2,3]),np.array([0,1,0]))
2
>>> a=np.array([[1,2],[3,4]])
>>> np.linalg.det(a)
-2.0000000000000004

求线性方程的解

x + y + z = 6
2y + 5z = -4
2x + 5y - z = 27

矩阵表示

>>> import numpy as np
>>> a = np.array([[1,1,1],[0,2,5],[2,5,-1]])
>>> ainv = np.linalg.inv(a)#求矩阵的逆
>>> b = np.array([[6],[-4],[27]])
>>> x = np.linalg.solve(a,b)#求解需要A-1和B
>>> x
array([[ 5.],
    [ 3.],
    [-2.]])
>>>

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

PYTHON发送邮件YAGMAIL的简单实现解析

这篇文章主要介绍了PYTHON发送邮件YAGMAIL的简单实现解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 yagmail发送邮...

使用Kivy将python程序打包为apk文件

使用Kivy将python程序打包为apk文件

1.概述 Kivy是一套Python下的跨平台开源应用开发框架,官网,我们可以用 它来将Python程序打包为安卓的apk安装文件。以下是在windows环境中使用。 安装和配置的过程中...

Python列表(list)常用操作方法小结

常见列表对象操作方法: list.append(x) 把一个元素添加到链表的结尾,相当于 a[len(a):] = [x] 。 list.extend(L) 将一个给定列表中的所有元素都...

django+tornado实现实时查看远程日志的方法

大致思路: 1.利用tornado提供的websocket功能与浏览器建立长连接,读取实时日志并输出到浏览器 2.写一个实时读取日志的脚本,利用saltstack远程执行,并把实时日志发...

对pandas数据判断是否为NaN值的方法详解

实际项目中有这样的需求,将某一列的值,映射成类别型的数据,这个时候,需要我们将范围等频切分,或者等距切分。 具体的做法可以先看某一些特征的具体分布情况,然后我们选择合适的阈值进行分割。...