Python numpy线性代数用法实例解析

yipeiwu_com6年前Python基础

这篇文章主要介绍了Python numpy线性代数用法实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

numpy中线性代数用法

矩阵乘法

>>> import numpy as np
>>> x=np.array([[1,2,3],[4,5,6]])
>>> y=np.array([[7,8],[-1,7],[8,9]])
>>> x
array([[1, 2, 3],
    [4, 5, 6]])
>>> y
array([[ 7, 8],
    [-1, 7],
    [ 8, 9]])
>>> x.dot(y)
array([[ 29, 49],
    [ 71, 121]])
>>> np.dot(x,y)
array([[ 29, 49],
    [ 71, 121]])

计算点积

>>> a=np.array([[1,2],[3,4]])
>>> b=np.array([[11,12],[12,13]])
>>> np.vdot(a,b)
123

计算的公式是

result=1*11+2*12+3*12+4*13

计算内积

>>> np.inner(np.array([1,2,3]),np.array([0,1,0]))
2

计算公式

result=1*0+2*1+3*0

计算行列式

>>> np.inner(np.array([1,2,3]),np.array([0,1,0]))
2
>>> a=np.array([[1,2],[3,4]])
>>> np.linalg.det(a)
-2.0000000000000004

求线性方程的解

x + y + z = 6
2y + 5z = -4
2x + 5y - z = 27

矩阵表示

>>> import numpy as np
>>> a = np.array([[1,1,1],[0,2,5],[2,5,-1]])
>>> ainv = np.linalg.inv(a)#求矩阵的逆
>>> b = np.array([[6],[-4],[27]])
>>> x = np.linalg.solve(a,b)#求解需要A-1和B
>>> x
array([[ 5.],
    [ 3.],
    [-2.]])
>>>

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python 分析Nginx访问日志并保存到MySQL数据库实例

使用Python 分析Nginx access 日志,根据Nginx日志格式进行分割并存入MySQL数据库。一、Nginx access日志格式如下:复制代码 代码如下:$remote_...

python将字典内容存入mysql实例代码

python将字典内容存入mysql实例代码

本文主要研究的是python将字典内容存入mysql,分享了实现代码,具体介绍如下。 1.背景 项目需要,用python实现了将字典内容存入本地的mysql数据库。比如说有个字典dic...

numpy中以文本的方式存储以及读取数据方法

Numpy中除了能够把数据以二进制文件的方式保存到文件中以外,还可以选择把数据保存到文本文件中。如果我有磁盘存储的需要,我一般会选择文本的存储,因为后期的处理工具会有更多的选择。 文本存...

Python利用前序和中序遍历结果重建二叉树的方法

Python利用前序和中序遍历结果重建二叉树的方法

本文实例讲述了Python利用前序和中序遍历结果重建二叉树的方法。分享给大家供大家参考,具体如下: 题目:输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中...

Python语言的变量认识及操作方法

今天我给大家介绍的是python中的Number变量,与c++,java有些不同,下面让来为大家介绍: 在python中是不用声明变量类型的,不过在使用变量前需要对其赋值,没有值得变量是...