Python numpy线性代数用法实例解析

yipeiwu_com6年前Python基础

这篇文章主要介绍了Python numpy线性代数用法实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

numpy中线性代数用法

矩阵乘法

>>> import numpy as np
>>> x=np.array([[1,2,3],[4,5,6]])
>>> y=np.array([[7,8],[-1,7],[8,9]])
>>> x
array([[1, 2, 3],
    [4, 5, 6]])
>>> y
array([[ 7, 8],
    [-1, 7],
    [ 8, 9]])
>>> x.dot(y)
array([[ 29, 49],
    [ 71, 121]])
>>> np.dot(x,y)
array([[ 29, 49],
    [ 71, 121]])

计算点积

>>> a=np.array([[1,2],[3,4]])
>>> b=np.array([[11,12],[12,13]])
>>> np.vdot(a,b)
123

计算的公式是

result=1*11+2*12+3*12+4*13

计算内积

>>> np.inner(np.array([1,2,3]),np.array([0,1,0]))
2

计算公式

result=1*0+2*1+3*0

计算行列式

>>> np.inner(np.array([1,2,3]),np.array([0,1,0]))
2
>>> a=np.array([[1,2],[3,4]])
>>> np.linalg.det(a)
-2.0000000000000004

求线性方程的解

x + y + z = 6
2y + 5z = -4
2x + 5y - z = 27

矩阵表示

>>> import numpy as np
>>> a = np.array([[1,1,1],[0,2,5],[2,5,-1]])
>>> ainv = np.linalg.inv(a)#求矩阵的逆
>>> b = np.array([[6],[-4],[27]])
>>> x = np.linalg.solve(a,b)#求解需要A-1和B
>>> x
array([[ 5.],
    [ 3.],
    [-2.]])
>>>

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python3.5局部变量与全局变量作用域实例分析

本文实例讲述了Python3.5局部变量与全局变量作用域。分享给大家供大家参考,具体如下: 1、局部变量与全局变量定义: 在子程序(函数)中定义的变量称为:局部变量;在程序顶级(一开始)...

python调用百度语音识别实现大音频文件语音识别功能

本文为大家分享了python实现大音频文件语音识别功能的具体代码,供大家参考,具体内容如下 实现思路:先用ffmpeg将其他非wav格式的音频转换为wav格式,并转换音频的声道(百度支持...

python实现最小二乘法线性拟合

python实现最小二乘法线性拟合

本文python代码实现的是最小二乘法线性拟合,并且包含自己造的轮子与别人造的轮子的结果比较。 问题:对直线附近的带有噪声的数据进行线性拟合,最终求出w,b的估计值。 最小二乘法基本...

应用OpenCV和Python进行SIFT算法的实现详解

应用OpenCV和Python进行SIFT算法的实现详解

应用OpenCV和Python进行SIFT算法的实现 如下图为进行测试的gakki101和gakki102,分别验证基于BFmatcher、FlannBasedMatcher等的SIFT...

基于scrapy实现的简单蜘蛛采集程序

本文实例讲述了基于scrapy实现的简单蜘蛛采集程序。分享给大家供大家参考。具体如下: # Standard Python library imports # 3rd party i...