Python numpy线性代数用法实例解析

yipeiwu_com6年前Python基础

这篇文章主要介绍了Python numpy线性代数用法实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

numpy中线性代数用法

矩阵乘法

>>> import numpy as np
>>> x=np.array([[1,2,3],[4,5,6]])
>>> y=np.array([[7,8],[-1,7],[8,9]])
>>> x
array([[1, 2, 3],
    [4, 5, 6]])
>>> y
array([[ 7, 8],
    [-1, 7],
    [ 8, 9]])
>>> x.dot(y)
array([[ 29, 49],
    [ 71, 121]])
>>> np.dot(x,y)
array([[ 29, 49],
    [ 71, 121]])

计算点积

>>> a=np.array([[1,2],[3,4]])
>>> b=np.array([[11,12],[12,13]])
>>> np.vdot(a,b)
123

计算的公式是

result=1*11+2*12+3*12+4*13

计算内积

>>> np.inner(np.array([1,2,3]),np.array([0,1,0]))
2

计算公式

result=1*0+2*1+3*0

计算行列式

>>> np.inner(np.array([1,2,3]),np.array([0,1,0]))
2
>>> a=np.array([[1,2],[3,4]])
>>> np.linalg.det(a)
-2.0000000000000004

求线性方程的解

x + y + z = 6
2y + 5z = -4
2x + 5y - z = 27

矩阵表示

>>> import numpy as np
>>> a = np.array([[1,1,1],[0,2,5],[2,5,-1]])
>>> ainv = np.linalg.inv(a)#求矩阵的逆
>>> b = np.array([[6],[-4],[27]])
>>> x = np.linalg.solve(a,b)#求解需要A-1和B
>>> x
array([[ 5.],
    [ 3.],
    [-2.]])
>>>

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python机器学习案例教程——K最近邻算法的实现

K最近邻属于一种分类算法,他的解释最容易,近朱者赤,近墨者黑,我们想看一个人是什么样的,看他的朋友是什么样的就可以了。当然其他还牵着到,看哪方面和朋友比较接近(对象特征),怎样才算是跟朋...

python通过scapy获取局域网所有主机mac地址示例

python通过scapy获取局域网所有主机mac地址示例

python通过scapy获取局域网所有主机mac地址复制代码 代码如下:#!/usr/bin/env python# -*- coding: utf-8 -*-from scapy.a...

Python使用lambda表达式对字典排序操作示例

本文实例讲述了Python使用lambda表达式对字典排序操作。分享给大家供大家参考,具体如下: lambda表达式也常用于字典排序,既然写到字典排序,那就把按键排序和按值排序都写写好了...

对python调用RPC接口的实例详解

要调用RPC接口,python提供了一个框架grpc,这是google开源的 rpc相关文档: https://grpc.io/docs/tutorials/basic/python.h...

Python列表与元组的异同详解

前言 “列表(list)与元组(tuple)两种数据类型有哪些区别”这个问题在初级程序员面试中经常碰到,超出面试官预期的答案往往能加不少印象分,也会给后续面试顺利进行提供一定帮助,这道题...