Python numpy线性代数用法实例解析

yipeiwu_com5年前Python基础

这篇文章主要介绍了Python numpy线性代数用法实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

numpy中线性代数用法

矩阵乘法

>>> import numpy as np
>>> x=np.array([[1,2,3],[4,5,6]])
>>> y=np.array([[7,8],[-1,7],[8,9]])
>>> x
array([[1, 2, 3],
    [4, 5, 6]])
>>> y
array([[ 7, 8],
    [-1, 7],
    [ 8, 9]])
>>> x.dot(y)
array([[ 29, 49],
    [ 71, 121]])
>>> np.dot(x,y)
array([[ 29, 49],
    [ 71, 121]])

计算点积

>>> a=np.array([[1,2],[3,4]])
>>> b=np.array([[11,12],[12,13]])
>>> np.vdot(a,b)
123

计算的公式是

result=1*11+2*12+3*12+4*13

计算内积

>>> np.inner(np.array([1,2,3]),np.array([0,1,0]))
2

计算公式

result=1*0+2*1+3*0

计算行列式

>>> np.inner(np.array([1,2,3]),np.array([0,1,0]))
2
>>> a=np.array([[1,2],[3,4]])
>>> np.linalg.det(a)
-2.0000000000000004

求线性方程的解

x + y + z = 6
2y + 5z = -4
2x + 5y - z = 27

矩阵表示

>>> import numpy as np
>>> a = np.array([[1,1,1],[0,2,5],[2,5,-1]])
>>> ainv = np.linalg.inv(a)#求矩阵的逆
>>> b = np.array([[6],[-4],[27]])
>>> x = np.linalg.solve(a,b)#求解需要A-1和B
>>> x
array([[ 5.],
    [ 3.],
    [-2.]])
>>>

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

详解Django中六个常用的自定义装饰器

装饰器作用 decorator是当今最流行的设计模式之一,很多使用它的人并不知道它是一种设计模式。这种模式有什么特别之处? 有兴趣可以看看Python Wiki上例子,使用它可以...

对python 通过ssh访问数据库的实例详解

通常,为了安全性,数据库只允许通过ssh来访问。例如:mysql数据库放在服务器A上,只允许数据库B来访问,这时,我们需要用机器C去访问数据库,就需要用C通过ssh连接B,再访问A。 通...

python制作图片缩略图

python制作图片缩略图

缩略图 在很多时候我们都需要将图片按照同比例缩小有利于存储 但是一张张手动去改的话太麻烦了 今天我们就用python实现一个简单的将一个文件夹中的所有图片进行指定大小的调整 缩略前:...

python仿evething的文件搜索器实例代码

python仿evething的文件搜索器实例代码

今天看到everything搜索速度秒杀windows自带的文件管理器,所以特地模仿everything实现了文件搜索以及打开对应文件的功能,首先来一张搜索对比图。 这是evething...

python 算法 排序实现快速排序

QUICKSORT(A, p, r)是快速排序的子程序,调用划分程序对数组进行划分,然后递归地调用QUICKSORT(A, p, r),以完成快速排序的过程。快速排序的最差时间复杂度为O...