Python numpy线性代数用法实例解析

yipeiwu_com6年前Python基础

这篇文章主要介绍了Python numpy线性代数用法实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

numpy中线性代数用法

矩阵乘法

>>> import numpy as np
>>> x=np.array([[1,2,3],[4,5,6]])
>>> y=np.array([[7,8],[-1,7],[8,9]])
>>> x
array([[1, 2, 3],
    [4, 5, 6]])
>>> y
array([[ 7, 8],
    [-1, 7],
    [ 8, 9]])
>>> x.dot(y)
array([[ 29, 49],
    [ 71, 121]])
>>> np.dot(x,y)
array([[ 29, 49],
    [ 71, 121]])

计算点积

>>> a=np.array([[1,2],[3,4]])
>>> b=np.array([[11,12],[12,13]])
>>> np.vdot(a,b)
123

计算的公式是

result=1*11+2*12+3*12+4*13

计算内积

>>> np.inner(np.array([1,2,3]),np.array([0,1,0]))
2

计算公式

result=1*0+2*1+3*0

计算行列式

>>> np.inner(np.array([1,2,3]),np.array([0,1,0]))
2
>>> a=np.array([[1,2],[3,4]])
>>> np.linalg.det(a)
-2.0000000000000004

求线性方程的解

x + y + z = 6
2y + 5z = -4
2x + 5y - z = 27

矩阵表示

>>> import numpy as np
>>> a = np.array([[1,1,1],[0,2,5],[2,5,-1]])
>>> ainv = np.linalg.inv(a)#求矩阵的逆
>>> b = np.array([[6],[-4],[27]])
>>> x = np.linalg.solve(a,b)#求解需要A-1和B
>>> x
array([[ 5.],
    [ 3.],
    [-2.]])
>>>

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python的__builtin__模块中的一些要点知识

1.isinstance函数:除了以一个类型作为参数,还可以以一个类型元组作为参数。 isinstance(obj,basestring)===isinstance(obj,(str...

Linux上使用Python统计每天的键盘输入次数

Github 项目主页 工具源码 分析结果: total : 15981 1568.0 == Backspace 1103.0 == Tab 1038.0 == Enter 900....

Django Form and ModelForm的区别与使用

Form介绍 在HTML页面中利用form表单向后端提交数据时,都会写一些获取用户输入的标签并且用form标签把它们包起来。 与此同时我们在好多场景下都需要对用户的输入做校验,比如校验...

PyQt5图形界面播放音乐的实例

安装Pygame pip install pygame import time import pygame pygame.init() print("播放音乐1") track =...

深入理解python中函数传递参数是值传递还是引用传递

目前网络上大部分博客的结论都是这样的: Python不允许程序员选择采用传值还是传 引用。Python参数传递采用的肯定是“传对象引用”的方式。实际上,这种方式相当于传值和传引用的一种综...