Python numpy线性代数用法实例解析

yipeiwu_com6年前Python基础

这篇文章主要介绍了Python numpy线性代数用法实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

numpy中线性代数用法

矩阵乘法

>>> import numpy as np
>>> x=np.array([[1,2,3],[4,5,6]])
>>> y=np.array([[7,8],[-1,7],[8,9]])
>>> x
array([[1, 2, 3],
    [4, 5, 6]])
>>> y
array([[ 7, 8],
    [-1, 7],
    [ 8, 9]])
>>> x.dot(y)
array([[ 29, 49],
    [ 71, 121]])
>>> np.dot(x,y)
array([[ 29, 49],
    [ 71, 121]])

计算点积

>>> a=np.array([[1,2],[3,4]])
>>> b=np.array([[11,12],[12,13]])
>>> np.vdot(a,b)
123

计算的公式是

result=1*11+2*12+3*12+4*13

计算内积

>>> np.inner(np.array([1,2,3]),np.array([0,1,0]))
2

计算公式

result=1*0+2*1+3*0

计算行列式

>>> np.inner(np.array([1,2,3]),np.array([0,1,0]))
2
>>> a=np.array([[1,2],[3,4]])
>>> np.linalg.det(a)
-2.0000000000000004

求线性方程的解

x + y + z = 6
2y + 5z = -4
2x + 5y - z = 27

矩阵表示

>>> import numpy as np
>>> a = np.array([[1,1,1],[0,2,5],[2,5,-1]])
>>> ainv = np.linalg.inv(a)#求矩阵的逆
>>> b = np.array([[6],[-4],[27]])
>>> x = np.linalg.solve(a,b)#求解需要A-1和B
>>> x
array([[ 5.],
    [ 3.],
    [-2.]])
>>>

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Flask-WTF表单的使用方法

flask_wtf是flask框架的表单验证模块,可以很方便生成表单,也可以当做json数据交互的验证工具,支持热插拔。 安装 pip install Flask-WTF Fla...

详解Python odoo中嵌入html简单的分页功能

详解Python odoo中嵌入html简单的分页功能

在odoo中,通过iframe嵌入 html,页面数据则通过controllers获取,使用jinja2模板传值渲染 html页面分页内容,这里写了判断逻辑 <!-- 分页 -...

python实现外卖信息管理系统

python实现外卖信息管理系统

本文为大家分享了python实现外卖信息管理系统的具体代码,供大家参考,具体内容如下 一、需求分析 需求分析包含如下: 1、问题描述 以外卖信息系统管理员身份登陆该系统,实现对店铺信...

详解Python二维数组与三维数组切片的方法

如果对象是二维数组,则切片应当是x[:]的形式,里面有一个冒号,冒号之前和之后分别表示对象的第0个维度和第1个维度; 如果对象是三维数组,则切片应当是x[::],里面有两个冒号,分割出...

浅谈python为什么不需要三目运算符和switch

对于三目运算符(ternary operator),python可以用conditional expressions来替代 如对于x<5?1:0可以用下面的方式来实现...