Python numpy线性代数用法实例解析

yipeiwu_com6年前Python基础

这篇文章主要介绍了Python numpy线性代数用法实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

numpy中线性代数用法

矩阵乘法

>>> import numpy as np
>>> x=np.array([[1,2,3],[4,5,6]])
>>> y=np.array([[7,8],[-1,7],[8,9]])
>>> x
array([[1, 2, 3],
    [4, 5, 6]])
>>> y
array([[ 7, 8],
    [-1, 7],
    [ 8, 9]])
>>> x.dot(y)
array([[ 29, 49],
    [ 71, 121]])
>>> np.dot(x,y)
array([[ 29, 49],
    [ 71, 121]])

计算点积

>>> a=np.array([[1,2],[3,4]])
>>> b=np.array([[11,12],[12,13]])
>>> np.vdot(a,b)
123

计算的公式是

result=1*11+2*12+3*12+4*13

计算内积

>>> np.inner(np.array([1,2,3]),np.array([0,1,0]))
2

计算公式

result=1*0+2*1+3*0

计算行列式

>>> np.inner(np.array([1,2,3]),np.array([0,1,0]))
2
>>> a=np.array([[1,2],[3,4]])
>>> np.linalg.det(a)
-2.0000000000000004

求线性方程的解

x + y + z = 6
2y + 5z = -4
2x + 5y - z = 27

矩阵表示

>>> import numpy as np
>>> a = np.array([[1,1,1],[0,2,5],[2,5,-1]])
>>> ainv = np.linalg.inv(a)#求矩阵的逆
>>> b = np.array([[6],[-4],[27]])
>>> x = np.linalg.solve(a,b)#求解需要A-1和B
>>> x
array([[ 5.],
    [ 3.],
    [-2.]])
>>>

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python KNN算法实现鸢尾花数据集分类

python KNN算法实现鸢尾花数据集分类

一、knn算法描述 1.基本概述 knn算法,又叫k-近邻算法。属于一个分类算法,主要思想如下: 一个样本在特征空间中的k个最近邻的样本中的大多数都属于某一个类别,则该样本也属于这个...

解决Pycharm 包已经下载,但是运行代码提示找不到模块的问题

解决Pycharm 包已经下载,但是运行代码提示找不到模块的问题

问题产生: pycharm→settings→Project interpreter→下载matplotlib包 运行代码,出现以下提示:找不到‘matplotlib'模块ModuleN...

python下载微信公众号相关文章

python下载微信公众号相关文章

本文实例为大家分享了python下载微信公众号相关文章的具体代码,供大家参考,具体内容如下 目的:从零开始学自动化测试公众号中下载“pytest"一系列文档 1、搜索微信号文章关键字搜索...

Python实现多条件筛选目标数据功能【测试可用】

本文实例讲述了Python实现多条件筛选目标数据功能。分享给大家供大家参考,具体如下: python中提供了一些数据过滤功能,可以使用内建函数,也可以使用循环语句来判断,或者使用pand...

django创建自定义模板处理器的实例详解

django创建自定义模板处理器: 一、需求来源: 在django开发中,页面是通过template(模板)进行渲染的,对于一些数据,可以通过{{ 变量 }}的方式进行传递。但是,如果整...