Python numpy线性代数用法实例解析

yipeiwu_com5年前Python基础

这篇文章主要介绍了Python numpy线性代数用法实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

numpy中线性代数用法

矩阵乘法

>>> import numpy as np
>>> x=np.array([[1,2,3],[4,5,6]])
>>> y=np.array([[7,8],[-1,7],[8,9]])
>>> x
array([[1, 2, 3],
    [4, 5, 6]])
>>> y
array([[ 7, 8],
    [-1, 7],
    [ 8, 9]])
>>> x.dot(y)
array([[ 29, 49],
    [ 71, 121]])
>>> np.dot(x,y)
array([[ 29, 49],
    [ 71, 121]])

计算点积

>>> a=np.array([[1,2],[3,4]])
>>> b=np.array([[11,12],[12,13]])
>>> np.vdot(a,b)
123

计算的公式是

result=1*11+2*12+3*12+4*13

计算内积

>>> np.inner(np.array([1,2,3]),np.array([0,1,0]))
2

计算公式

result=1*0+2*1+3*0

计算行列式

>>> np.inner(np.array([1,2,3]),np.array([0,1,0]))
2
>>> a=np.array([[1,2],[3,4]])
>>> np.linalg.det(a)
-2.0000000000000004

求线性方程的解

x + y + z = 6
2y + 5z = -4
2x + 5y - z = 27

矩阵表示

>>> import numpy as np
>>> a = np.array([[1,1,1],[0,2,5],[2,5,-1]])
>>> ainv = np.linalg.inv(a)#求矩阵的逆
>>> b = np.array([[6],[-4],[27]])
>>> x = np.linalg.solve(a,b)#求解需要A-1和B
>>> x
array([[ 5.],
    [ 3.],
    [-2.]])
>>>

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python配置文件处理的方法教程

Python配置文件处理的方法教程

前言 在平时的工程中,我们在构建工程时,常常需要用到配置文件,用来配置项目的一些信息,比如数据库,请求网址,文件夹,线程、进程数等信息,这样就可以方便我们通过修改配置文件中的参数来很好地...

python读取Excel实例详解

本文实例为大家分享了python读取Excel实例的具体代码,供大家参考,具体内容如下 1.操作步骤: (1)安装python官方Excel库-->xlrd (2)获取Excel文...

numpy.ndarray 交换多维数组(矩阵)的行/列方法

如下所示: >> import numpy as np >> P = np.eye(3) >> P array([[ 1., 0., 0.],...

pycharm远程开发项目的实现步骤

pycharm远程开发项目的实现步骤

你是不是在学习python的时候在使用虚拟机系统进行开发,来回切换很是不方便,那么今天给大家推荐一个pycharm强大的功能。 接下来我们利用这个django项目创建一个子app,测验...

解决python3在anaconda下安装caffe失败的问题

Python 跟 Python3 完全就是两种语言 1、 import caffe FAILED  环境为 Ubuntu 16 cuda 8.0 NVIDIA 361.77...