Python numpy线性代数用法实例解析

yipeiwu_com6年前Python基础

这篇文章主要介绍了Python numpy线性代数用法实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

numpy中线性代数用法

矩阵乘法

>>> import numpy as np
>>> x=np.array([[1,2,3],[4,5,6]])
>>> y=np.array([[7,8],[-1,7],[8,9]])
>>> x
array([[1, 2, 3],
    [4, 5, 6]])
>>> y
array([[ 7, 8],
    [-1, 7],
    [ 8, 9]])
>>> x.dot(y)
array([[ 29, 49],
    [ 71, 121]])
>>> np.dot(x,y)
array([[ 29, 49],
    [ 71, 121]])

计算点积

>>> a=np.array([[1,2],[3,4]])
>>> b=np.array([[11,12],[12,13]])
>>> np.vdot(a,b)
123

计算的公式是

result=1*11+2*12+3*12+4*13

计算内积

>>> np.inner(np.array([1,2,3]),np.array([0,1,0]))
2

计算公式

result=1*0+2*1+3*0

计算行列式

>>> np.inner(np.array([1,2,3]),np.array([0,1,0]))
2
>>> a=np.array([[1,2],[3,4]])
>>> np.linalg.det(a)
-2.0000000000000004

求线性方程的解

x + y + z = 6
2y + 5z = -4
2x + 5y - z = 27

矩阵表示

>>> import numpy as np
>>> a = np.array([[1,1,1],[0,2,5],[2,5,-1]])
>>> ainv = np.linalg.inv(a)#求矩阵的逆
>>> b = np.array([[6],[-4],[27]])
>>> x = np.linalg.solve(a,b)#求解需要A-1和B
>>> x
array([[ 5.],
    [ 3.],
    [-2.]])
>>>

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python高斯分布概率密度函数的使用详解

python高斯分布概率密度函数的使用详解

如下所示: import matplotlib.pyplot as plt import numpy as np from scipy import stats from matpl...

Python函数中定义参数的四种方式

Python中函数参数的定义主要有四种方式: 1. F(arg1,arg2,…) 这是最常见的定义方式,一个函数可以定义任意个参数,每个参数间用逗号分割,用这种方式定义的函数在调用的的时...

Python父目录、子目录的相互调用方法

Python父目录、子目录的相互调用方法

最近在使用Python的过程中经常遇到找不到该模块的问题。其中一个就是父目录子目录之间相互调用的情况。下面简单总结下。 我们在F:\Code文件夹下面创建一个test文件夹 而test...

DataFrame中的object转换成float的方法

DataFrame中的object转换成float的方法

数据类型转换: 今天遇到一个问题,就是DataFrame类型的数据里是str型的数字,想把数字转换为int 或float;百度没有发现好的,也可能输入的关键字不对,找不到; DataFr...

使用Python制作微信跳一跳辅助

使用Python制作微信跳一跳辅助

1.  前言 微信的跳一跳相信大家都很熟悉了,而且现在各种外挂、辅助也是满天飞,反正本人的好友排行榜中已经是八九百都不足为奇了。某宝上一搜一堆结果,最低的居然只要3块多,想刷多...