Python numpy线性代数用法实例解析

yipeiwu_com6年前Python基础

这篇文章主要介绍了Python numpy线性代数用法实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

numpy中线性代数用法

矩阵乘法

>>> import numpy as np
>>> x=np.array([[1,2,3],[4,5,6]])
>>> y=np.array([[7,8],[-1,7],[8,9]])
>>> x
array([[1, 2, 3],
    [4, 5, 6]])
>>> y
array([[ 7, 8],
    [-1, 7],
    [ 8, 9]])
>>> x.dot(y)
array([[ 29, 49],
    [ 71, 121]])
>>> np.dot(x,y)
array([[ 29, 49],
    [ 71, 121]])

计算点积

>>> a=np.array([[1,2],[3,4]])
>>> b=np.array([[11,12],[12,13]])
>>> np.vdot(a,b)
123

计算的公式是

result=1*11+2*12+3*12+4*13

计算内积

>>> np.inner(np.array([1,2,3]),np.array([0,1,0]))
2

计算公式

result=1*0+2*1+3*0

计算行列式

>>> np.inner(np.array([1,2,3]),np.array([0,1,0]))
2
>>> a=np.array([[1,2],[3,4]])
>>> np.linalg.det(a)
-2.0000000000000004

求线性方程的解

x + y + z = 6
2y + 5z = -4
2x + 5y - z = 27

矩阵表示

>>> import numpy as np
>>> a = np.array([[1,1,1],[0,2,5],[2,5,-1]])
>>> ainv = np.linalg.inv(a)#求矩阵的逆
>>> b = np.array([[6],[-4],[27]])
>>> x = np.linalg.solve(a,b)#求解需要A-1和B
>>> x
array([[ 5.],
    [ 3.],
    [-2.]])
>>>

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

wxPython事件驱动实例详解

wxPython事件驱动实例详解

本文实例讲述了wxPython的事件驱动机制,分享给大家供大家参考。具体方法如下: 先来看看如下代码: #!/usr/bin/python # moveevent.py...

Python自动化之数据驱动让你的脚本简洁10倍【推荐】

Python自动化之数据驱动让你的脚本简洁10倍【推荐】

前言 数据驱动是一种思想,让数据和代码进行分离,比如爬虫时,我们需要分页爬取数据时,我们往往把页数 page 参数化,放在 for 循环 range 中,假如没有 range 这个自带...

TensorFlow 模型载入方法汇总(小结)

TensorFlow 模型载入方法汇总(小结)

一、TensorFlow常规模型加载方法 保存模型 tf.train.Saver()类,.save(sess, ckpt文件目录)方法 参数名称...

Python数据结构与算法之图的基本实现及迭代器实例详解

Python数据结构与算法之图的基本实现及迭代器实例详解

本文实例讲述了Python数据结构与算法之图的基本实现及迭代器。分享给大家供大家参考,具体如下: 这篇文章参考自《复杂性思考》一书的第二章,并给出这一章节里我的习题解答。 (这书不到12...

对django views中 request, response的常用操作详解

request 获取post请求中的json数据 def hello(request): data = json.loads(request.body) ... json格式还...