Python算法中的时间复杂度问题

yipeiwu_com5年前Python基础

在实现算法的时候,通常会从两方面考虑算法的复杂度,即时间复杂度和空间复杂度。顾名思义,时间复杂度用于度量算法的计算工作量,空间复杂度用于度量算法占用的内存空间。

本文将从时间复杂度的概念出发,结合实际代码示例分析算法的时间复杂度。

渐进时间复杂度

时间复杂度是算法运算所消耗的时间,因为不同大小的输入数据,算法处理所要消耗的时间是不同的,因此评估一个算运行时间是比较困难的,所以通常关注的是时间频度,即算法运行计算操作的次数,记为T(n),其中n称为问题的规模。

同样,因为n是一个变量,n发生变化时,时间频度T(n) 也在发生变化,我们称时间复杂度的极限情形称为算法的渐近时间复杂度,记为O(n),不包含函数的低阶和首项系数。

我们以如下 例子来解释一下:

如上例子中,我们根据代码上执行的平均时间假设,计算 run_time(n) 函数的时间复杂度,如下:

上述时间复杂度计算公式T(n) ,是我们对函数 run_time(n) 进行的时间复杂度的估算。当n 值非常大的时候,T(n)函数中常数项 time0 以及n的系数 (time1+time2+time3+time4) 对n的影响也可以忽略不计了,因此这里函数run_time(n) 的时间复杂度我们可以表示为 O(n)。

因为我们计算的是极限状态下(如,n非常大)的时间复杂度,因此其中存在以下两种特性:

低阶项相对于高阶项产生的影响很小,可以忽略不计。 最高项系数对最高项的影响也很小,可以忽略不计。

根据上述两种特性,时间复杂度的计算方法:

1.只取最高阶项,去掉低阶项。

2.去掉最高项的系数。

3.针对常数阶,取时间复杂度为O(1)。

我们通过下面例子理解一下常见的时间复杂度,如下:

时间复杂度:常数阶 O(1)

时间复杂度:线性阶 O(n)

时间复杂度:线性阶 O(n)

时间复杂度:平方阶 O(n^2)

时间复杂度:平方阶 O(n^2)

时间复杂度:平方阶 O(n^2)

时间复杂度:立方阶 O(n^3)

时间复杂度:对数阶 O(logn)

随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低,时间复杂度排序如下:

练习一下

如下count_sort 函数实现了计数排序,列表中的数范围都在0到100之间,列表长度大约为100万。

如上count_sort 函数的 空间复杂度为 O(n),公式如下:

总结

以上所述是小编给大家介绍的Python算法中的时间复杂度问题,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对【听图阁-专注于Python设计】网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

相关文章

python+os根据文件名自动生成文本

python+os根据文件名自动生成文本

有时我们有很多文件(如图片),我们需要对每一个文件进行操作。 我们还需要一份文件的名字来进行遍历,这时我们首先需要建立一份文件名单,有时还会对文件名做一定的筛选,如我们只选择jpg格...

Python类中方法getitem和getattr详解

1、getitem 方法 使用这个方法最大的印象就是调用对象的属性可以像字典取值一样使用中括号['key'] 使用中括号对对象中的属性进行取值、赋值或者删除时,会自动触发对应的__g...

python中pass语句用法实例分析

本文实例讲述了python中pass语句用法。分享给大家供大家参考。具体分析如下: 1、空语句 do nothing 2、保证格式完整 3、保证语义完整 4、以if语句为例: C/C++...

Django实现发送邮件找回密码功能

Django实现发送邮件找回密码功能

在各大网站上,一定都遇到过找回密码的问题,通常采用的方式是通过发送带有验证码的邮件进行身份验证,本文将介绍通过Django实现邮件找回密码功能。 找回密码流程 功能流程: 1.首先在用户...

python使用super()出现错误解决办法

python使用super()出现错误解决办法 当我们在python的子类中调用父类的方法时,会用到super(),不过我遇到了一个问题,顺便记录一下。 比如,我写了如下错误代码:...