Python求解正态分布置信区间教程

yipeiwu_com6年前Python基础

正态分布和置信区间

正态分布(Normal Distribution)又叫高斯分布,是一种非常重要的概率分布。其概率密度函数的数学表达如下:

置信区间是对该区间能包含未知参数的可置信的程度的描述。

使用SciPy求解置信区间

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

N = 10000
x = np.random.normal(0, 1, N)
# ddof取值为1是因为在统计学中样本的标准偏差除的是(N-1)而不是N,统计学中的标准偏差除的是N
# SciPy中的std计算默认是采用统计学中标准差的计算方式
mean, std = x.mean(), x.std(ddof=1)
print(mean, std)
# 计算置信区间
# 这里的0.9是置信水平
conf_intveral = stats.norm.interval(0.9, loc=mean, scale=std)
print(conf_intveral)

输出如下:

0.0033541207210673997 0.9986647964318905
(-1.639303291798682, 1.6460115332408163)

这里的-1.639303291798682是置信上界,1.6460115332408163是置信下界,两个数值构成的区间就是置信区间

使用Matplotlib绘制正态分布密度曲线

# 绘制概率密度分布图
x = np.arange(-5, 5, 0.001)
# PDF是概率密度函数
y = stats.norm.pdf(x, loc=mean, scale=std)
plt.plot(x, y)
plt.show()

这里的pdf()函数是Probability density function,就是本文最开始的那个公式

最后的输出图像如下,可以看到结果跟理论上的正太分布还是比较像的:

正态分布置信区间规律

函数曲线下68.268949%的面积在平均数左右的一个标准差范围内

函数曲线下95.449974%的面积在平均数左右两个标准差的范围内

函数曲线下99.730020%的面积在平均数左右三个标准差的范围内

函数曲线下99.993666%的面积在平均数左右四个标准差的范围内

以上这篇Python求解正态分布置信区间教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python映射列表实例分析

本文实例讲述了python映射列表。分享给大家供大家参考。具体分析如下: 列表映射是个非常有用的方法,通过对列表的每个元素应用一个函数来转换数据,可以使用一种策略或者方法来遍历计算每个元...

Python算术运算符实例详解

Python算术运算符 以下假设变量a为10,变量b为20: 运算符 描述 实例 +...

Python的Flask框架与数据库连接的教程

Python的Flask框架与数据库连接的教程

 命令行方式运行Python脚本 在这个章节中,我们将写一些简单的数据库管理脚本。在此之前让我们来复习一下如何通过命令行方式执行Python脚本. 如果Linux 或者OS X...

python 调用HBase的简单实例

新来的一个工程师不懂HBase,java不熟,python还行,我建议他那可以考虑用HBase的thrift调用,完成目前的工作。 首先,安装thrift 下载thrift,这里,我用的...

Python实现生成随机数据插入mysql数据库的方法

Python实现生成随机数据插入mysql数据库的方法

本文实例讲述了Python实现生成随机数据插入mysql数据库的方法。分享给大家供大家参考,具体如下: 运行结果: 实现代码: import random as r import...