Python求解正态分布置信区间教程

yipeiwu_com6年前Python基础

正态分布和置信区间

正态分布(Normal Distribution)又叫高斯分布,是一种非常重要的概率分布。其概率密度函数的数学表达如下:

置信区间是对该区间能包含未知参数的可置信的程度的描述。

使用SciPy求解置信区间

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

N = 10000
x = np.random.normal(0, 1, N)
# ddof取值为1是因为在统计学中样本的标准偏差除的是(N-1)而不是N,统计学中的标准偏差除的是N
# SciPy中的std计算默认是采用统计学中标准差的计算方式
mean, std = x.mean(), x.std(ddof=1)
print(mean, std)
# 计算置信区间
# 这里的0.9是置信水平
conf_intveral = stats.norm.interval(0.9, loc=mean, scale=std)
print(conf_intveral)

输出如下:

0.0033541207210673997 0.9986647964318905
(-1.639303291798682, 1.6460115332408163)

这里的-1.639303291798682是置信上界,1.6460115332408163是置信下界,两个数值构成的区间就是置信区间

使用Matplotlib绘制正态分布密度曲线

# 绘制概率密度分布图
x = np.arange(-5, 5, 0.001)
# PDF是概率密度函数
y = stats.norm.pdf(x, loc=mean, scale=std)
plt.plot(x, y)
plt.show()

这里的pdf()函数是Probability density function,就是本文最开始的那个公式

最后的输出图像如下,可以看到结果跟理论上的正太分布还是比较像的:

正态分布置信区间规律

函数曲线下68.268949%的面积在平均数左右的一个标准差范围内

函数曲线下95.449974%的面积在平均数左右两个标准差的范围内

函数曲线下99.730020%的面积在平均数左右三个标准差的范围内

函数曲线下99.993666%的面积在平均数左右四个标准差的范围内

以上这篇Python求解正态分布置信区间教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python字符串处理之count()方法的使用

 count()方法返回出现在范围内串子数range [start, end]。可选参数的start和end都解释为片符号。 语法 以下是count()方法的语法: str...

Python解析xml中dom元素的方法

本文实例讲述了Python解析xml中dom元素的方法。分享给大家供大家参考。具体实现方法如下: 复制代码 代码如下:from xml.dom import minidom try: &...

Python进阶_关于命名空间与作用域(详解)

写在前面 如非特别说明,下文均基于Python3 命名空间与作用于跟名字的绑定相关性很大,可以结合另一篇介绍Python名字、对象及其绑定的文章。 1. 命名空间 1.1 什么是命名空间...

Python实现查找二叉搜索树第k大的节点功能示例

Python实现查找二叉搜索树第k大的节点功能示例

本文实例讲述了Python实现查找二叉搜索树第k大的节点功能。分享给大家供大家参考,具体如下: 题目描述 给定一个二叉搜索树,找出其中第k大的节点 就是一个中序遍历的过程,不需要额外的...

python k-近邻算法实例分享

简单说明 这个算法主要工作是测量不同特征值之间的距离,有个这个距离,就可以进行分类了。 简称kNN。 已知:训练集,以及每个训练集的标签。 接下来:和训练集中的数据对比,计算最相似的k个...