Python求解正态分布置信区间教程

yipeiwu_com5年前Python基础

正态分布和置信区间

正态分布(Normal Distribution)又叫高斯分布,是一种非常重要的概率分布。其概率密度函数的数学表达如下:

置信区间是对该区间能包含未知参数的可置信的程度的描述。

使用SciPy求解置信区间

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

N = 10000
x = np.random.normal(0, 1, N)
# ddof取值为1是因为在统计学中样本的标准偏差除的是(N-1)而不是N,统计学中的标准偏差除的是N
# SciPy中的std计算默认是采用统计学中标准差的计算方式
mean, std = x.mean(), x.std(ddof=1)
print(mean, std)
# 计算置信区间
# 这里的0.9是置信水平
conf_intveral = stats.norm.interval(0.9, loc=mean, scale=std)
print(conf_intveral)

输出如下:

0.0033541207210673997 0.9986647964318905
(-1.639303291798682, 1.6460115332408163)

这里的-1.639303291798682是置信上界,1.6460115332408163是置信下界,两个数值构成的区间就是置信区间

使用Matplotlib绘制正态分布密度曲线

# 绘制概率密度分布图
x = np.arange(-5, 5, 0.001)
# PDF是概率密度函数
y = stats.norm.pdf(x, loc=mean, scale=std)
plt.plot(x, y)
plt.show()

这里的pdf()函数是Probability density function,就是本文最开始的那个公式

最后的输出图像如下,可以看到结果跟理论上的正太分布还是比较像的:

正态分布置信区间规律

函数曲线下68.268949%的面积在平均数左右的一个标准差范围内

函数曲线下95.449974%的面积在平均数左右两个标准差的范围内

函数曲线下99.730020%的面积在平均数左右三个标准差的范围内

函数曲线下99.993666%的面积在平均数左右四个标准差的范围内

以上这篇Python求解正态分布置信区间教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Windows平台Python连接sqlite3数据库的方法分析

本文实例讲述了Windows平台Python连接sqlite3数据库的方法。分享给大家供大家参考,具体如下: 之前没有接触过sqlite数据库,只是听到同事聊起这个。 有一次,手机端同事...

Python+django实现文件下载

(1)方法一、直接用a标签的href+数据库中文件地址,即可下载。缺点:word excel是直接弹框下载,对于image txt 等文件的下载方式是直接在新页面打开。 (2)方法二、在...

pandas.DataFrame 根据条件新建列并赋值的方法

实例如下所示: import numpy as np import pandas as pd data = {'city': ['Beijing', 'Shanghai', 'Gu...

用python实现将数组元素按从小到大的顺序排列方法

如下所示: def findSmallest(arr): smallest = arr[0]#将第一个元素的值作为最小值赋给smallest smallest_index = 0...

浅析Python语言自带的数据结构有哪些

Python作为一种脚本语言,其要求强制缩进,使其易读、美观,它的数据类型可以实现自动转换,而不需要像C、Java那样给变量定义数据类型,使其编写非常方便简单,所以广受大家的欢迎。 现如...