Python求解正态分布置信区间教程

yipeiwu_com5年前Python基础

正态分布和置信区间

正态分布(Normal Distribution)又叫高斯分布,是一种非常重要的概率分布。其概率密度函数的数学表达如下:

置信区间是对该区间能包含未知参数的可置信的程度的描述。

使用SciPy求解置信区间

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

N = 10000
x = np.random.normal(0, 1, N)
# ddof取值为1是因为在统计学中样本的标准偏差除的是(N-1)而不是N,统计学中的标准偏差除的是N
# SciPy中的std计算默认是采用统计学中标准差的计算方式
mean, std = x.mean(), x.std(ddof=1)
print(mean, std)
# 计算置信区间
# 这里的0.9是置信水平
conf_intveral = stats.norm.interval(0.9, loc=mean, scale=std)
print(conf_intveral)

输出如下:

0.0033541207210673997 0.9986647964318905
(-1.639303291798682, 1.6460115332408163)

这里的-1.639303291798682是置信上界,1.6460115332408163是置信下界,两个数值构成的区间就是置信区间

使用Matplotlib绘制正态分布密度曲线

# 绘制概率密度分布图
x = np.arange(-5, 5, 0.001)
# PDF是概率密度函数
y = stats.norm.pdf(x, loc=mean, scale=std)
plt.plot(x, y)
plt.show()

这里的pdf()函数是Probability density function,就是本文最开始的那个公式

最后的输出图像如下,可以看到结果跟理论上的正太分布还是比较像的:

正态分布置信区间规律

函数曲线下68.268949%的面积在平均数左右的一个标准差范围内

函数曲线下95.449974%的面积在平均数左右两个标准差的范围内

函数曲线下99.730020%的面积在平均数左右三个标准差的范围内

函数曲线下99.993666%的面积在平均数左右四个标准差的范围内

以上这篇Python求解正态分布置信区间教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python操作mysql数据库

一、数据库基本操作 1. 想允许在数据库写中文,可在创建数据库时用下面命令 create database zcl charset utf8; 2. 查看students表结构 desc...

Python中那些 Pythonic的写法详解

前言 Martin(Bob大叔)曾在《代码整洁之道》一书打趣地说:当你的代码在做 Code Review 时,审查者要是愤怒地吼道: “What the fuck is this shi...

优化Python代码使其加快作用域内的查找

我将示范微优化(micro optimization)如何提升python代码5%的执行速度。5%!同时也会触怒任何维护你代码的人。 但实际上,这篇文章只是解释一下你偶尔会在标准库或者其...

python中设置超时跳过,超时退出的方式

在工作中遇到过 个问题 执行一条代码时间过长 而且还不报错,卡死在那。还要继续执行下面代码,如何操作。 下面是个简单的实例 pip安装 第三方eventlet这个包 – pip inst...

用Cython加速Python到“起飞”(推荐)

用Cython加速Python到“起飞”(推荐)

事先声明,标题没有把“Python”错打成“Cython”,因为要讲的就是名为“Cython”的东西。 Cython是让Python脚本支持C语言扩展的编译器,Cython能够将Pyt...