Python求解正态分布置信区间教程

yipeiwu_com5年前Python基础

正态分布和置信区间

正态分布(Normal Distribution)又叫高斯分布,是一种非常重要的概率分布。其概率密度函数的数学表达如下:

置信区间是对该区间能包含未知参数的可置信的程度的描述。

使用SciPy求解置信区间

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

N = 10000
x = np.random.normal(0, 1, N)
# ddof取值为1是因为在统计学中样本的标准偏差除的是(N-1)而不是N,统计学中的标准偏差除的是N
# SciPy中的std计算默认是采用统计学中标准差的计算方式
mean, std = x.mean(), x.std(ddof=1)
print(mean, std)
# 计算置信区间
# 这里的0.9是置信水平
conf_intveral = stats.norm.interval(0.9, loc=mean, scale=std)
print(conf_intveral)

输出如下:

0.0033541207210673997 0.9986647964318905
(-1.639303291798682, 1.6460115332408163)

这里的-1.639303291798682是置信上界,1.6460115332408163是置信下界,两个数值构成的区间就是置信区间

使用Matplotlib绘制正态分布密度曲线

# 绘制概率密度分布图
x = np.arange(-5, 5, 0.001)
# PDF是概率密度函数
y = stats.norm.pdf(x, loc=mean, scale=std)
plt.plot(x, y)
plt.show()

这里的pdf()函数是Probability density function,就是本文最开始的那个公式

最后的输出图像如下,可以看到结果跟理论上的正太分布还是比较像的:

正态分布置信区间规律

函数曲线下68.268949%的面积在平均数左右的一个标准差范围内

函数曲线下95.449974%的面积在平均数左右两个标准差的范围内

函数曲线下99.730020%的面积在平均数左右三个标准差的范围内

函数曲线下99.993666%的面积在平均数左右四个标准差的范围内

以上这篇Python求解正态分布置信区间教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实现一个数组除以一个数的例子

如果直接用python的一个list除以一个数,会报错: a = [1.0, 1.0, 1.0] c = a/3 print(c) TypeError: unsupported...

Python实现获取邮箱内容并解析的方法示例

本文实例讲述了Python实现获取邮箱内容并解析的方法。分享给大家供大家参考,具体如下: # -*- coding: utf-8 -*- from email.parser impo...

Python3.6+selenium2.53.6自动化测试_读取excel文件的方法

Python3.6+selenium2.53.6自动化测试_读取excel文件的方法

环境: 编辑工具: 浏览器: 安装xlrd 安装DDT 一 分析 1 目录结构 2 导入包 二 代码 import xlrd cla...

python 拷贝特定后缀名文件,并保留原始目录结构的实例

如下所示: #!/usr/bin/python # -*- coding: UTF-8 -*- import os import shutil def cp_tree_ext(ex...

Python数据可视化编程通过Matplotlib创建散点图代码示例

Python数据可视化编程通过Matplotlib创建散点图代码示例

Matplotlib简述: Matplotlib是一个用于创建出高质量图表的桌面绘图包(主要是2D方面)。该项目是由JohnHunter于2002年启动的,其目的是为Python构建一个...