Python求解正态分布置信区间教程

yipeiwu_com5年前Python基础

正态分布和置信区间

正态分布(Normal Distribution)又叫高斯分布,是一种非常重要的概率分布。其概率密度函数的数学表达如下:

置信区间是对该区间能包含未知参数的可置信的程度的描述。

使用SciPy求解置信区间

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

N = 10000
x = np.random.normal(0, 1, N)
# ddof取值为1是因为在统计学中样本的标准偏差除的是(N-1)而不是N,统计学中的标准偏差除的是N
# SciPy中的std计算默认是采用统计学中标准差的计算方式
mean, std = x.mean(), x.std(ddof=1)
print(mean, std)
# 计算置信区间
# 这里的0.9是置信水平
conf_intveral = stats.norm.interval(0.9, loc=mean, scale=std)
print(conf_intveral)

输出如下:

0.0033541207210673997 0.9986647964318905
(-1.639303291798682, 1.6460115332408163)

这里的-1.639303291798682是置信上界,1.6460115332408163是置信下界,两个数值构成的区间就是置信区间

使用Matplotlib绘制正态分布密度曲线

# 绘制概率密度分布图
x = np.arange(-5, 5, 0.001)
# PDF是概率密度函数
y = stats.norm.pdf(x, loc=mean, scale=std)
plt.plot(x, y)
plt.show()

这里的pdf()函数是Probability density function,就是本文最开始的那个公式

最后的输出图像如下,可以看到结果跟理论上的正太分布还是比较像的:

正态分布置信区间规律

函数曲线下68.268949%的面积在平均数左右的一个标准差范围内

函数曲线下95.449974%的面积在平均数左右两个标准差的范围内

函数曲线下99.730020%的面积在平均数左右三个标准差的范围内

函数曲线下99.993666%的面积在平均数左右四个标准差的范围内

以上这篇Python求解正态分布置信区间教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python中Numpy mat的使用详解

前面介绍过用dnarray来模拟,但mat更符合矩阵,这里的mat与Matlab中的很相似。(mat与matrix等同) 基本操作 >>> m= np.mat([1...

Python中将两个或多个list合成一个list的方法小结

python中,list这种数据结构很常用到,如果两个或者多个list结构相同,内容类型相同,我们通常会将两个或者多个list合并成一个,这样我们再循环遍历的时候就可以一次性处理掉了。所...

python实现感知器

python实现感知器

上篇博客转载了关于感知器的用法,遂这篇做个大概总结,并实现一个简单的感知器,也为了加深自己的理解。 感知器是最简单的神经网络,只有一层。感知器是模拟生物神经元行为的机器。感知器的模型如下...

Python向excel中写入数据的方法

Python向excel中写入数据的方法

最近做了一项工作需要把处理的数据写入到Excel表格中进行保存,所以在此就简单介绍使用Python如何把数据保存到excel表格中。 数据导入之前需要安装 xlwt依赖包,安装的方法就很...

python实现高斯投影正反算方式

使用Python实现了一下我们同事的C++高斯投影正反算,实际跑通,可用。 #!/ usr/bin/python # -*- coding:utf-8 -*- import mat...