Python求解正态分布置信区间教程

yipeiwu_com5年前Python基础

正态分布和置信区间

正态分布(Normal Distribution)又叫高斯分布,是一种非常重要的概率分布。其概率密度函数的数学表达如下:

置信区间是对该区间能包含未知参数的可置信的程度的描述。

使用SciPy求解置信区间

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

N = 10000
x = np.random.normal(0, 1, N)
# ddof取值为1是因为在统计学中样本的标准偏差除的是(N-1)而不是N,统计学中的标准偏差除的是N
# SciPy中的std计算默认是采用统计学中标准差的计算方式
mean, std = x.mean(), x.std(ddof=1)
print(mean, std)
# 计算置信区间
# 这里的0.9是置信水平
conf_intveral = stats.norm.interval(0.9, loc=mean, scale=std)
print(conf_intveral)

输出如下:

0.0033541207210673997 0.9986647964318905
(-1.639303291798682, 1.6460115332408163)

这里的-1.639303291798682是置信上界,1.6460115332408163是置信下界,两个数值构成的区间就是置信区间

使用Matplotlib绘制正态分布密度曲线

# 绘制概率密度分布图
x = np.arange(-5, 5, 0.001)
# PDF是概率密度函数
y = stats.norm.pdf(x, loc=mean, scale=std)
plt.plot(x, y)
plt.show()

这里的pdf()函数是Probability density function,就是本文最开始的那个公式

最后的输出图像如下,可以看到结果跟理论上的正太分布还是比较像的:

正态分布置信区间规律

函数曲线下68.268949%的面积在平均数左右的一个标准差范围内

函数曲线下95.449974%的面积在平均数左右两个标准差的范围内

函数曲线下99.730020%的面积在平均数左右三个标准差的范围内

函数曲线下99.993666%的面积在平均数左右四个标准差的范围内

以上这篇Python求解正态分布置信区间教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python批量下载抖音视频

python批量下载抖音视频

本文实例为大家分享了python批量下载抖音视频的具体代码,供大家参考,具体内容如下 知识储备:博主是在Pycharm下进行的 文件夹:dou_ying 1、在文件夹doy_ying...

python生成n个元素的全组合方法

利用二进制反格雷码(bynary reflected Gray code)的方式生成n个元素的全组合,Cn1+Cn2+...+Cnn, 如在利用穷举方法解决背包问题时,就需要找出物品的所...

Python神奇的内置函数locals的实例讲解

摘要 本文我们介绍神奇的locals函数,包括动态创建变量和动态访问变量,以及一个应用场景。 相同属性不相邻问题 需求:有两个list,分别为list1和list2。list1中...

selenium+python实现1688网站验证码图片的截取功能

selenium+python实现1688网站验证码图片的截取功能

1. 背景 •在1688网站爬取数据时,如果访问过于频繁,无论用户是否已经登录,就会弹出如下所示的验证码登录框。 一般的验证码是类似于如下的元素(通过链接单独加载进页面...

Python smtplib实现发送邮件功能

本文实例为大家分享了Python smtplib发送邮件功能的具体代码,供大家参考,具体内容如下 解决之前版本的问题,下面为最新版 #!/usr/bin/env python #...