Python求解正态分布置信区间教程

yipeiwu_com6年前Python基础

正态分布和置信区间

正态分布(Normal Distribution)又叫高斯分布,是一种非常重要的概率分布。其概率密度函数的数学表达如下:

置信区间是对该区间能包含未知参数的可置信的程度的描述。

使用SciPy求解置信区间

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

N = 10000
x = np.random.normal(0, 1, N)
# ddof取值为1是因为在统计学中样本的标准偏差除的是(N-1)而不是N,统计学中的标准偏差除的是N
# SciPy中的std计算默认是采用统计学中标准差的计算方式
mean, std = x.mean(), x.std(ddof=1)
print(mean, std)
# 计算置信区间
# 这里的0.9是置信水平
conf_intveral = stats.norm.interval(0.9, loc=mean, scale=std)
print(conf_intveral)

输出如下:

0.0033541207210673997 0.9986647964318905
(-1.639303291798682, 1.6460115332408163)

这里的-1.639303291798682是置信上界,1.6460115332408163是置信下界,两个数值构成的区间就是置信区间

使用Matplotlib绘制正态分布密度曲线

# 绘制概率密度分布图
x = np.arange(-5, 5, 0.001)
# PDF是概率密度函数
y = stats.norm.pdf(x, loc=mean, scale=std)
plt.plot(x, y)
plt.show()

这里的pdf()函数是Probability density function,就是本文最开始的那个公式

最后的输出图像如下,可以看到结果跟理论上的正太分布还是比较像的:

正态分布置信区间规律

函数曲线下68.268949%的面积在平均数左右的一个标准差范围内

函数曲线下95.449974%的面积在平均数左右两个标准差的范围内

函数曲线下99.730020%的面积在平均数左右三个标准差的范围内

函数曲线下99.993666%的面积在平均数左右四个标准差的范围内

以上这篇Python求解正态分布置信区间教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python随机数random模块使用指南

random 模块是Python自带的模块,除了生成最简单的随机数以外,还有很多功能。 random.random() 用来生成一个0~1之间的随机浮点数,范围[0,10 >...

opencv python 图像去噪的实现方法

opencv python 图像去噪的实现方法

在早先的章节里,我们看到很多图像平滑技术如高斯模糊,Median模糊等,它们在移除数量小的噪音时在某种程度上比较好用。在这些技术里,我们取像素周围的一小部分邻居,做一些类似于高斯平均权重...

Python3.4 splinter(模拟填写表单)使用方法

如下所示: from splinter.browser import Browser b = Browser('chrome') url = 'https://kyfw.12...

Python使用自带的ConfigParser模块读写ini配置文件

Python使用自带的ConfigParser模块读写ini配置文件

在用Python做开发的时候经常会用到数据库或者其他需要动态配置的东西,硬编码在里面每次去改会很麻烦。Python自带有读取配置文件的模块ConfigParser,使用起来非常方便。 i...

python实现数据清洗(缺失值与异常值处理)

python实现数据清洗(缺失值与异常值处理)

1。 将本地sql文件写入mysql数据库 本文写入的是python数据库的taob表 source [本地文件] 其中总数据为9616行,列分别为title,link,pric...