Python求解正态分布置信区间教程

yipeiwu_com6年前Python基础

正态分布和置信区间

正态分布(Normal Distribution)又叫高斯分布,是一种非常重要的概率分布。其概率密度函数的数学表达如下:

置信区间是对该区间能包含未知参数的可置信的程度的描述。

使用SciPy求解置信区间

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats

N = 10000
x = np.random.normal(0, 1, N)
# ddof取值为1是因为在统计学中样本的标准偏差除的是(N-1)而不是N,统计学中的标准偏差除的是N
# SciPy中的std计算默认是采用统计学中标准差的计算方式
mean, std = x.mean(), x.std(ddof=1)
print(mean, std)
# 计算置信区间
# 这里的0.9是置信水平
conf_intveral = stats.norm.interval(0.9, loc=mean, scale=std)
print(conf_intveral)

输出如下:

0.0033541207210673997 0.9986647964318905
(-1.639303291798682, 1.6460115332408163)

这里的-1.639303291798682是置信上界,1.6460115332408163是置信下界,两个数值构成的区间就是置信区间

使用Matplotlib绘制正态分布密度曲线

# 绘制概率密度分布图
x = np.arange(-5, 5, 0.001)
# PDF是概率密度函数
y = stats.norm.pdf(x, loc=mean, scale=std)
plt.plot(x, y)
plt.show()

这里的pdf()函数是Probability density function,就是本文最开始的那个公式

最后的输出图像如下,可以看到结果跟理论上的正太分布还是比较像的:

正态分布置信区间规律

函数曲线下68.268949%的面积在平均数左右的一个标准差范围内

函数曲线下95.449974%的面积在平均数左右两个标准差的范围内

函数曲线下99.730020%的面积在平均数左右三个标准差的范围内

函数曲线下99.993666%的面积在平均数左右四个标准差的范围内

以上这篇Python求解正态分布置信区间教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

使用Python刷淘宝喵币(低阶入门版)

这两天因为双十一来临,到处收集喵币,反反复复的点击操作搞得我十分头痛,遂产生了写个脚本自动点击的想法。 【低阶入门版本】之中不牵扯图像文字转换,或者图像匹配的问题,只是简单的屏幕开屏、点...

Python引用模块和查找模块路径

模块间相互独立相互引用是任何一种编程语言的基础能力。对于“模块”这个词在各种编程语言中或许是不同的,但我们可以简单认为一个程序文件是一个模块,文件里包含了类或者方法的定义。对于编译型的语...

深入解析Python编程中super关键字的用法

官方文档中关于super的定义说的不是很多,大致意思是返回一个代理对象让你能够调用一些继承过来的方法,查找的机制遵循mro规则,最常用的情况如下面这个例子所示: class C(B)...

urllib2自定义opener详解

urllib2.urlopen()函数不支持验证、cookie或者其它HTTP高级功能。要支持这些功能,必须使用build_opener()函数创建自定义Opener对象。 复制代码 代...

python3+PyQt5重新实现QT事件处理程序

python3+PyQt5重新实现QT事件处理程序

本文是对《Python Qt GUI快速编程》的第10章的例子events用Python3+PyQt5进行改写,涉及到重新实现QWidget的事件处理程序。本例子涉及到上下文菜单,鼠标事...