python 计算积分图和haar特征的实例代码

yipeiwu_com6年前Python基础

下面的代码通过积分图计算一张图片的一种haar特征的所有可能的值。初步学习图像处理并尝试写代码,如有错误,欢迎指出。

import cv2
import numpy as np
import matplotlib.pyplot as plt
#
#计算积分图
#
def integral(img):
  integ_graph = np.zeros((img.shape[0],img.shape[1]),dtype = np.int32)
  for x in range(img.shape[0]):
    sum_clo = 0
    for y in range(img.shape[1]):
      sum_clo = sum_clo + img[x][y]
      integ_graph[x][y] = integ_graph[x-1][y] + sum_clo;
  return integ_graph

# Types of Haar-like rectangle features
#  --- ---
# |  |  |
# | - | + |
# |  |  |
# --- ---
#
#就算所有需要计算haar特征的区域
#
def getHaarFeaturesArea(width,height):
  widthLimit = width-1
  heightLimit = height/2-1
  features = []
  for w in range(1,int(widthLimit)):
    for h in range(1,int(heightLimit)):
      wMoveLimit = width - w
      hMoveLimit = height - 2*h
      for x in range(0, wMoveLimit):
        for y in range(0, hMoveLimit):
          features.append([x, y, w, h])
  return features
#
#通过积分图特征区域计算haar特征
#
def calHaarFeatures(integral_graph,features_graph):
  haarFeatures = []
  for num in range(len(features_graph)):
    #计算左面的矩形区局的像素和
    haar1 = integral_graph[features_graph[num][0]][features_graph[num][1]]-\
    integral_graph[features_graph[num][0]+features_graph[num][2]][features_graph[num][1]] -\
    integral_graph[features_graph[num][0]][features_graph[num][1]+features_graph[num][3]] +\
    integral_graph[features_graph[num][0]+features_graph[num][2]][features_graph[num][1]+features_graph[num][3]]
    #计算右面的矩形区域的像素和
    haar2 = integral_graph[features_graph[num][0]][features_graph[num][1]+features_graph[num][3]]-\
    integral_graph[features_graph[num][0]+features_graph[num][2]][features_graph[num][1]+features_graph[num][3]] -\
    integral_graph[features_graph[num][0]][features_graph[num][1]+2*features_graph[num][3]] +\
    integral_graph[features_graph[num][0]+features_graph[num][2]][features_graph[num][1]+2*features_graph[num][3]]
    #右面的像素和减去左面的像素和
    haarFeatures.append(haar2-haar1)
  return haarFeatures


img = cv2.imread("faces/face00001.bmp",0)
integeralGraph = integral(img)
featureAreas = getHaarFeaturesArea(img.shape[0],img.shape[1])
haarFeatures = calHaarFeatures(integeralGraph,featureAreas)
print(haarFeatures)

以上这篇python 计算积分图和haar特征的实例代码就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python中的urllib模块使用详解

urllib模块提供的上层接口,使我们可以像读取本地文件一样读取www和ftp上的数据。每当使用这个模块的时候,老是会想起公司产品的客户端,同事用C++下载Web上的图片,那种“痛苦”的...

Python逐行读取文件中内容的简单方法

Python逐行读取文件中内容的简单方法

项目开发中文件的读写是必不可少的 下面来简单介绍一下文件的读 读文件,首先我们要有文件 那我首先自己创建了一个文本文件password.txt 内容如下: 下面先贴上代码,然后对其进...

Python 数据处理库 pandas进阶教程

Python 数据处理库 pandas进阶教程

前言 本文紧接着前一篇的入门教程,会介绍一些关于pandas的进阶知识。建议读者在阅读本文之前先看完pandas入门教程。 同样的,本文的测试数据和源码可以在这里获取: Github:p...

基于Django模板中的数字自增(详解)

基于Django模板中的数字自增(详解)

Django框架的模板提供了{% for %} 标签来进行循环 例如对集合进行循环是比较简单的 {% for row in v1 %} <div>{{row.name}}...

解决python "No module named pip"的问题

python 升级后导致不能使用原来的pip命令 windows平台 cmd中敲命令:python -m ensurepip 得到pip的setuptools 然后就可以用:easy_i...