python将邻接矩阵输出成图的实现

yipeiwu_com5年前Python基础

利用networkx,numpy,matplotlib,将邻接矩阵输出为图形。

1,自身确定一个邻接矩阵,然后通过循环的方式添加变,然后输出图像

import networkx as nx
import matplotlib.pyplot as plt
import numpy as np
 
G = nx.Graph()
Matrix = np.array(
  [
    [0, 1, 1, 1, 1, 1, 0, 0], # a
    [0, 0, 1, 0, 1, 0, 0, 0], # b
    [0, 0, 0, 1, 0, 0, 0, 0], # c
    [0, 0, 0, 0, 1, 0, 0, 0], # d
    [0, 0, 0, 0, 0, 1, 0, 0], # e
    [0, 0, 1, 0, 0, 0, 1, 1], # f
    [0, 0, 0, 0, 0, 1, 0, 1], # g
    [0, 0, 0, 0, 0, 1, 1, 0] # h
  ]
)
for i in range(len(Matrix)):
  for j in range(len(Matrix)):
    G.add_edge(i, j)
 
nx.draw(G)
plt.show()

2,有向图

G = nx.DiGraph()
G.add_node(1)
G.add_node(2)
G.add_nodes_from([3, 4, 5, 6])
G.add_cycle([1, 2, 3, 4])
G.add_edge(1, 3)
G.add_edges_from([(3, 5), (3, 6), (6, 7)])
nx.draw(G)
# plt.savefig("youxiangtu.png")
plt.show()

3, 5节点完全图

G = nx.complete_graph(5)
nx.draw(G)
plt.savefig("8nodes.png")
plt.show()

4,无向图

G = nx.Graph()
G.add_node(1)
G.add_node(2)
G.add_nodes_from([3, 4, 5, 6])
G.add_cycle([1, 2, 3, 4])
G.add_edge(1, 3)
G.add_edges_from([(3, 5), (3, 6), (6, 7)])
nx.draw(G)
# plt.savefig("wuxiangtu.png")
plt.show()

5,颜色节点图

G = nx.Graph()
G.add_edges_from([(1, 2), (1, 3), (1, 4), (1, 5), (4, 5), (4, 6), (5, 6)])
pos = nx.spring_layout(G)
 
colors = [1, 2, 3, 4, 5, 6]
nx.draw_networkx_nodes(G, pos, node_color=colors)
nx.draw_networkx_edges(G, pos)
 
plt.axis('off')
# plt.savefig("color_nodes.png")
plt.show()

将图转化为邻接矩阵,再将邻接矩阵转化为图,还有图的集合表示,邻接矩阵表示,图形表示,这三种表现形式互相转化的问题是一个值得学习的地方,继续加油!

以上这篇python将邻接矩阵输出成图的实现就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python同步windows和linux文件

python同步windows和linux文件

写python脚本的初衷,每次在windows编辑完文件后,想同步到linux上去,只能够登录服务器,然后再利用网络copy,重复性很大,就想着能不能写一个小脚本帮我同步。 逻辑:比对本...

Python2.X/Python3.X中urllib库区别讲解

本文介绍urllib库在不同版本的Python中的变动,并以Python3.X讲解urllib库的相关用法。 urllib库对照速查表 Python2.X...

python虚拟环境virtualenv的使用教程

virtualenv 是一个创建隔绝的Python环境的工具。virtualenv创建一个包含所有必要的可执行文件的文件夹,用来使用Python工程所需的包。 安装 pip inst...

Python聚类算法之DBSACN实例分析

Python聚类算法之DBSACN实例分析

本文实例讲述了Python聚类算法之DBSACN。分享给大家供大家参考,具体如下: DBSCAN:是一种简单的,基于密度的聚类算法。本次实现中,DBSCAN使用了基于中心的方法。在基于中...

numpy库与pandas库axis=0,axis= 1轴的用法详解

numpy库与pandas库axis=0,axis= 1轴的用法详解

对数据进行操作时,经常需要在横轴方向或者数轴方向对数据进行操作,这时需要设定参数axis的值: axis = 0 代表对横轴操作,也就是第0轴; axis = 1 代表对纵轴操...