在OpenCV里使用Camshift算法的实现

yipeiwu_com5年前Python基础

前面学习过Meanshift算法,在观察这个结果标记时,会发现有这样一个问题,如下图:

汽车比较远时,用一个很小的窗口就可以把它框住,这是符合近大远小的投影原理,当比较近的时候如下:

相同大小的窗口已经不能包围它了,那么这样跟踪目标对象就成为了一个问题,怎么样来更改它呢?那么就是Camshift (Continuously Adaptive Meanshift)算法引入的原因了。同时还会有一个问题,怎么样判断物体旋转的方向,这个算法也会解决这样的问题。这个算法发表在1998年的论文《Computer Vision Face Tracking for Use in a Perceptual User Interface》里。

这个算法,首先应用meanshift找到最大密度,然后再更新窗口的大小,接着计算最适合外包椭圆;如果不合适又进入一轮迭代过程。直满足meanshift的条件,并且窗口大小也合适为止。

Camshift函数返回两个值,第一个值ret是一个旋转的窗口,第二个值是窗口搜索位置给下一次搜索使用的。例子如下:

#python 3.7.4,opencv4.1
#蔡军生 https://blog.csdn.net/caimouse/article/details/51749579
#
import numpy as np
import cv2
from matplotlib import pyplot as plt
 
capture = cv2.VideoCapture(1)
if not capture.isOpened:
  print('Unable to open: ')
  exit(0)
  
#获取第一帧图片
ret,frame = capture.read()
 
#设置目标窗口
#读取文件
find = cv2.imread('luohu1.png')
h,w = find.shape[:2]
roi = find[10: 120, 10: 120]
x = 10
y = 10
width = 120 - x
height = 120 - y
track_window = (x, y, w, h)
print(track_window)
#跟踪目标
hsv_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.)))
roi_hist = cv2.calcHist([hsv_roi],[0],mask,[180],[0,180]) #计算直方图
cv2.normalize(roi_hist,roi_hist,0,255,cv2.NORM_MINMAX)
 
#设置迭代条件,每10移动一点
term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 )
 
while(1):
  ret, frame = capture.read()
 
  if ret == True:
    hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
    dst = cv2.calcBackProject([hsv],[0],roi_hist,[0,180],1)#反向投影
 
    #使用 meanshift获得新位置
    ret, track_window = cv2.CamShift(dst, track_window, term_crit)
 
    #显示标记
    pts = cv2.boxPoints(ret)
    pts = np.int0(pts)
    img2 = cv2.polylines(frame,[pts],True, (255,0,0),2)
    cv2.imshow('img2',img2)
 
    cv2.imshow("dst", dst) 
    cv2.imshow("roi", roi)
    keyboard = cv2.waitKey(1)
    if keyboard == ord('q') or keyboard == ord('Q'):
      break
  else:
    break
 
  
capture.release()
cv2.destroyAllWindows()

结果输出如下:

比较远的照片

比较近的照片

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

简单介绍django提供的加密算法

导包 from django.contrib.auth.hashers import make_password, check_password 加密 # 原密码 1234 p...

Python和Ruby中each循环引用变量问题(一个隐秘BUG?)

虽然这个问题我是在 Python 里遇到的,但是用 Ruby 解释起来比较容易一些。在 Ruby 里,遍历一个数组可以有很多种方法,最常用的两种无非是 for 和 each:复制代码 代...

在树莓派2或树莓派B+上安装Python和OpenCV的教程

在树莓派2或树莓派B+上安装Python和OpenCV的教程

我的Raspberry Pi 2昨天刚邮到,这家伙看上去很小巧可爱。 这小家伙有4核900MHZ的处理器,1G内存。要知道,Raspberry Pi 2 可比我中学电脑实验室里大多数电脑...

python中单下划线_的常见用法总结

python中单下划线_的常见用法总结

这篇文章给大家介绍python中单下划线_,具体内容如下所示: 前言 我们在阅读源码的时候经常会看到各种单下划线_的使用,所以今天特地做一个总结,而且其实很多(不是所有)关于下划线的使用...

tensorflow实现逻辑回归模型

逻辑回归模型 逻辑回归是应用非常广泛的一个分类机器学习算法,它将数据拟合到一个logit函数(或者叫做logistic函数)中,从而能够完成对事件发生的概率进行预测。 impo...