python利用dlib获取人脸的68个landmark

yipeiwu_com5年前Python基础

(1) 单人脸情况

import cv2
import dlib

path = "1.jpg"
img = cv2.imread(path)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#人脸检测画框
detector = dlib.get_frontal_face_detector()
# 获取人脸关键点检测器
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
#获取人脸框位置信息
dets = detector(gray, 1)#1表示采样(upsample)次数 0识别的人脸少点,1识别的多点,2识别的更多,小脸也可以识别
for face in dets:
  shape = predictor(img, face) # 寻找人脸的68个标定点
  # 遍历所有点,打印出其坐标,并圈出来
  for pt in shape.parts():
    pt_pos = (pt.x, pt.y)
    cv2.circle(img, pt_pos, 2, (0, 0, 255), 1)#img, center, radius, color, thickness

  cv2.imshow("image", img)

cv2.waitKey(0)
cv2.destroyAllWindows()

(2) 多人脸情况

import cv2
import dlib

path1 = "zxc.jpg"
img = cv2.imread(path1)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#人脸检测画框
detector = dlib.get_frontal_face_detector()
# 获取人脸关键点检测器
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
#获取人脸框位置信息
dets = detector(gray, 1)#1表示采样(upsample)次数 0识别的人脸少点,1识别的多点,2识别的更多,小脸也可以识别

for i in range(len(dets)):
  shape = predictor(img, dets[i]) # 寻找人脸的68个标定点
  # 遍历所有点,打印出其坐标,并圈出来
  for pt in shape.parts():
    pt_pos = (pt.x, pt.y)
    cv2.circle(img, pt_pos, 2, (0, 0, 255), 1)#img, center, radius, color, thickness

cv2.imshow("image", img)

cv2.waitKey(0)#等待键盘输入
cv2.destroyAllWindows()

(3) 获取电脑摄像头实时识别标定

import cv2
import dlib
import numpy as np

cap = cv2.VideoCapture(0)#打开笔记本的内置摄像头,若参数是视频文件路径则打开视频
cap.isOpened()

def key_points(img):
  points_keys = []
  PREDICTOR_PATH = "shape_predictor_68_face_landmarks.dat"
  detector = dlib.get_frontal_face_detector()
  predictor = dlib.shape_predictor(PREDICTOR_PATH)
  rects = detector(img,1)

  for i in range(len(rects)):
    landmarks = np.matrix([[p.x,p.y] for p in predictor(img,rects[i]).parts()])
    for point in landmarks:
      pos = (point[0,0],point[0,1])
      points_keys.append(pos)
      cv2.circle(img,pos,2,(255,0,0),-1)
  return img

while(True):
  ret, frame = cap.read()#按帧读取视频,ret,frame是cap.read()方法的两个返回值。其中ret是布尔值,如果读取帧是正确的则返回True,如果文件读取到结尾,它的返回值就为False。frame就是每一帧的图像,是个三维矩阵。
  # gray = cv2.cvtColor(frame)
  face_key = key_points(frame)
  cv2.imshow('frame',face_key)
  if cv2.waitKey(1) & 0xFF == ord('q'):
    break

cap.release()#释放摄像头
cv2.destroyAllWindows()#关闭所有图像窗口

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实现的递归神经网络简单示例

本文实例讲述了Python实现的递归神经网络。分享给大家供大家参考,具体如下: # Recurrent Neural Networks import copy, numpy as n...

pandas DataFrame实现几列数据合并成为新的一列方法

pandas DataFrame实现几列数据合并成为新的一列方法

问题描述 我有一个用于模型训练的DataFrame如下图所示: 其中的country、province、city、county四列其实是位置信息的不同层级,应该合成一列用于模型训练 方...

深入Python解释器理解Python中的字节码

深入Python解释器理解Python中的字节码

我最近在参与Python字节码相关的工作,想与大家分享一些这方面的经验。更准确的说,我正在参与2.6到2.7版本的CPython解释器字节码的工作。 Python是一门动态语言,在命令行...

跟老齐学Python之字典,你还记得吗?

字典,这个东西你现在还用吗?随着网络的发展,用的人越来越少了。不少人习惯于在网上搜索,不仅有web版,乃至于已经有手机版的各种字典了。我曾经用过一本小小的《新华字典》。 《新华字典》是中...

pytorch中的自定义反向传播,求导实例

pytorch中自定义backward()函数。在图像处理过程中,我们有时候会使用自己定义的算法处理图像,这些算法多是基于numpy或者scipy等包。 那么如何将自定义算法的梯度加入到...