numpy中三维数组中加入元素后的位置详解

yipeiwu_com5年前Python基础

今天做数据处理时,遇到了从三维数组中批量加入二维数组的需求。其中三维数组在深度学习的特征数据处理时经常会使用到,所以读者有必要对该小知识点做到清楚了解并掌握。现对三维数组中的元素位置结合代码做详细归纳总结,方便日后查阅和为网友答疑!

图示效果图:

直接贴代码:

def test3D():
 import numpy as np
 data_array = np.zeros((3, 5, 6), dtype=np.int)
 data_array[1, 2, 2] = 1
 
 print(data_array)

介绍:通过np.zeros创建一个3行5列6个通道的三维数组,并给第二个通道的第一行第二列赋值1.

运行结果图:

分析: 有运行结果可知,创建了六个通道,在深度学习中这六个通道相当于六个Feature Map,对应结果图中的六列。

再向外看一层,共有三个块,每个块代表这个通道的第几行数据。

每个块里有五行数据,每一行代表每个通道的第几列数据

所以,代码中的赋值语句: data_array[1, 2, 2] = 1

表示为第2个通道,下标从0开始,所以在图中位置为第三列;第1行第2列,下标从0开始,所以图中表示第二个块的第三行;即为图中所示位置。

补充:三维数组的求和

多维数组的轴(axis=)是和该数组的size(或者shape)的元素是相对应的;

>>> np.random.seed(123)
>>> X = np.random.randint(0, 5, [3, 2, 2])
>>> print(X)
 
[[[5 2]
 [4 2]]
 
 [[1 3]
 [2 3]]
 
 [[1 1]
 [0 1]]]
 
>>> X.sum(axis=0)
array([[7, 6],
  [6, 6]])
 
>>> X.sum(axis=1)
array([[9, 4],
  [3, 6],
  [1, 2]])
 
>>> X.sum(axis=2)
array([[7, 6],
  [4, 5],
  [2, 1]])

如果将三维数组的每一个二维看做一个平面(plane,X[0, :, :], X[1, :, :], X[2, :, :]),三维数组即是这些二维平面层叠(stacked)出来的结果。则(axis=0)表示全部平面上的对应位置,(axis=1),每一个平面的每一列,(axis=2),每一个平面的每一行。

以上这篇numpy中三维数组中加入元素后的位置详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python常用内置模块之xml模块(详解)

Python常用内置模块之xml模块(详解)

xml即可扩展标记语言,它可以用来标记数据、定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言。从结构上,很像HTML超文本标记语言。但他们被设计的目的是不同的,超文本标记语言...

Django Rest framework三种分页方式详解

Django Rest framework三种分页方式详解

前言 我们数据库有几千万条数据,这些数据需要展示,我们不可能直接从数据库把数据全部读取出来. 因为这样会给内存造成巨大的压力,很容易就会内存溢出,所以我们希望一点一点的取. 同样,展示的...

python 实现目录复制的三种小结

复制目录: 包含多层子目录 方法: 递归, 深度遍历,广度遍历 深度遍历&广度遍历: 思路: 1.获得源目录子级目录,并设置目标目录的子级路径 1.1在此就创建两个栈(或者队列),将原目...

python3大文件解压和基本操作

先说下:所谓的大文件并不是压缩文件有多大,几十兆的文件而是解压后几百兆。其中就遇到解压不成功的情况.、读小文件时成功,大文件时失败等 def unzip_to_txt_plus(z...

如何通过雪花算法用Python实现一个简单的发号器

如何通过雪花算法用Python实现一个简单的发号器

实现一个简单的发号器 根据snowflake算法的原理实现一个简单的发号器,产生不重复、自增的id。 1.snowflake算法的简单描述 这里的snowflake算法是用二进制的...