numpy中三维数组中加入元素后的位置详解

yipeiwu_com5年前Python基础

今天做数据处理时,遇到了从三维数组中批量加入二维数组的需求。其中三维数组在深度学习的特征数据处理时经常会使用到,所以读者有必要对该小知识点做到清楚了解并掌握。现对三维数组中的元素位置结合代码做详细归纳总结,方便日后查阅和为网友答疑!

图示效果图:

直接贴代码:

def test3D():
 import numpy as np
 data_array = np.zeros((3, 5, 6), dtype=np.int)
 data_array[1, 2, 2] = 1
 
 print(data_array)

介绍:通过np.zeros创建一个3行5列6个通道的三维数组,并给第二个通道的第一行第二列赋值1.

运行结果图:

分析: 有运行结果可知,创建了六个通道,在深度学习中这六个通道相当于六个Feature Map,对应结果图中的六列。

再向外看一层,共有三个块,每个块代表这个通道的第几行数据。

每个块里有五行数据,每一行代表每个通道的第几列数据

所以,代码中的赋值语句: data_array[1, 2, 2] = 1

表示为第2个通道,下标从0开始,所以在图中位置为第三列;第1行第2列,下标从0开始,所以图中表示第二个块的第三行;即为图中所示位置。

补充:三维数组的求和

多维数组的轴(axis=)是和该数组的size(或者shape)的元素是相对应的;

>>> np.random.seed(123)
>>> X = np.random.randint(0, 5, [3, 2, 2])
>>> print(X)
 
[[[5 2]
 [4 2]]
 
 [[1 3]
 [2 3]]
 
 [[1 1]
 [0 1]]]
 
>>> X.sum(axis=0)
array([[7, 6],
  [6, 6]])
 
>>> X.sum(axis=1)
array([[9, 4],
  [3, 6],
  [1, 2]])
 
>>> X.sum(axis=2)
array([[7, 6],
  [4, 5],
  [2, 1]])

如果将三维数组的每一个二维看做一个平面(plane,X[0, :, :], X[1, :, :], X[2, :, :]),三维数组即是这些二维平面层叠(stacked)出来的结果。则(axis=0)表示全部平面上的对应位置,(axis=1),每一个平面的每一列,(axis=2),每一个平面的每一行。

以上这篇numpy中三维数组中加入元素后的位置详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python 递归遍历文件夹,并打印满足条件的文件路径实例

题目:利用协程来遍历目录下,所有子文件及子文件夹下的文件是否含有某个字段值,并打印满足条件的文件的绝对路径。 #!/user/bin/env python # -*- coding:...

python实现绘制树枝简单示例

python实现绘制树枝简单示例

python是解释型语言,本文介绍了Python下利用turtle实现绘图功能的示例,本例所示为Python绘制一个树枝,具体实现代码如下:    &nbs...

独特的python循环语句

1、局部变量 for i in range(5): print i, print i, 运行结果: 0 1 2 3 4 4 i是for语句里面的局部变量。但在python...

Python 常用的安装Module方式汇总

一、方法1: 单文件模块 直接把文件拷贝到 $python_dir/Lib 二、方法2: 多文件模块,带setup.py 下载模块包,进行解压,进入模块文件夹,执行: python...

Python下Fabric的简单部署方法

Fabric是一个用Python开发的部署工具,最大特点是不用登录远程服务器,在本地运行远程命令,几行Python脚本就可以轻松部署。 文档入口 简单安装 sudo easy_ins...