numpy.linalg.eig() 计算矩阵特征向量方式

yipeiwu_com6年前Python基础

在PCA中有遇到,在这里记录一下

计算矩阵的特征值个特征向量,下面给出几个示例代码:

在使用前需要单独import一下

>>> from numpy import linalg as LA
>>> w, v = LA.eig(np.diag((1, 2, 3)))
>>> w; v
array([ 1., 2., 3.])
array([[ 1., 0., 0.],
    [ 0., 1., 0.],
    [ 0., 0., 1.]])
>>> w, v = LA.eig(np.array([[1, -1], [1, 1]]))
>>> w; v
array([ 1. + 1.j, 1. - 1.j])
array([[ 0.70710678+0.j    , 0.70710678+0.j    ],
    [ 0.00000000-0.70710678j, 0.00000000+0.70710678j]])
>>> a = np.array([[1, 1j], [-1j, 1]])
>>> w, v = LA.eig(a)
>>> w; v
array([ 2.00000000e+00+0.j,  5.98651912e-36+0.j]) # i.e., {2, 0}
array([[ 0.00000000+0.70710678j, 0.70710678+0.j    ],
    [ 0.70710678+0.j    , 0.00000000+0.70710678j]])
>>> a = np.array([[1 + 1e-9, 0], [0, 1 - 1e-9]])
>>> # Theor. e-values are 1 +/- 1e-9
>>> w, v = LA.eig(a)
>>> w; v
array([ 1., 1.])
array([[ 1., 0.],
    [ 0., 1.]])

官方文档链接:http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html

以上这篇numpy.linalg.eig() 计算矩阵特征向量方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python使用arcpy.mapping模块批量出图

出图是项目里常见的任务,有的项目甚至会要上百张图片,所以批量出土工具很有必要。arcpy.mapping就是ArcGIS里的出图模块,能快速完成一个出图工具。 arcpy.mapping...

Python2和Python3中urllib库中urlencode的使用注意事项

前言 在Python中,我们通常使用urllib中的urlencode方法将字典编码,用于提交数据给url等操作,但是在Python2和Python3中urllib模块中所提供的urle...

python 删除非空文件夹的实例

一般删除文件时使用os库,然后利用os.remove(path)即可完成删除,如果删除空文件夹则可使用os.removedirs(path)即可, 但是如果需要删除整个文件夹,且文件夹非...

Python3字符串学习教程

字符串类型是python里面最常见的类型,是不可变类型,支持单引号、双引号、三引号,三引号是一对连续的单引号或者双引号,允许一个字符串跨多行。 字符串连接:前面提到的+操作符可用于字符串...

python导入csv文件出现SyntaxError问题分析

背景 np.loadtxt()用于从文本加载数据。 文本文件中的每一行必须含有相同的数据。 *** loadtxt(fname,dtype=<class'float'>,co...