numpy.linalg.eig() 计算矩阵特征向量方式

yipeiwu_com6年前Python基础

在PCA中有遇到,在这里记录一下

计算矩阵的特征值个特征向量,下面给出几个示例代码:

在使用前需要单独import一下

>>> from numpy import linalg as LA
>>> w, v = LA.eig(np.diag((1, 2, 3)))
>>> w; v
array([ 1., 2., 3.])
array([[ 1., 0., 0.],
    [ 0., 1., 0.],
    [ 0., 0., 1.]])
>>> w, v = LA.eig(np.array([[1, -1], [1, 1]]))
>>> w; v
array([ 1. + 1.j, 1. - 1.j])
array([[ 0.70710678+0.j    , 0.70710678+0.j    ],
    [ 0.00000000-0.70710678j, 0.00000000+0.70710678j]])
>>> a = np.array([[1, 1j], [-1j, 1]])
>>> w, v = LA.eig(a)
>>> w; v
array([ 2.00000000e+00+0.j,  5.98651912e-36+0.j]) # i.e., {2, 0}
array([[ 0.00000000+0.70710678j, 0.70710678+0.j    ],
    [ 0.70710678+0.j    , 0.00000000+0.70710678j]])
>>> a = np.array([[1 + 1e-9, 0], [0, 1 - 1e-9]])
>>> # Theor. e-values are 1 +/- 1e-9
>>> w, v = LA.eig(a)
>>> w; v
array([ 1., 1.])
array([[ 1., 0.],
    [ 0., 1.]])

官方文档链接:http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html

以上这篇numpy.linalg.eig() 计算矩阵特征向量方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python使用turtle绘制分形树

python使用turtle绘制分形树

由于分形树具有对称性,自相似性,所以我们可以用递归来完成绘制。只要确定开始树枝长、每层树枝的减短长度和树枝分叉的角度,我们就可以把分形树画出来啦!! 代码如下: # -*- co...

利用python实现短信和电话提醒功能的例子

有时候,我们需要程序帮我们自动检测某些事件的发生 这个需求是广泛存在的 因此,这里整理了利用python实现短信和电话提醒功能的方法 主要需要完成以下4个步骤: - 安装核心库:twi...

Python简直是万能的,这5大主要用途你一定要知道!(推荐)

从2015开始国内就开始慢慢接触Python了,从16年开始Python就已经在国内的热度更高了,目前也可以算的上"全民Python"了。 众所周知小学生的教材里面已经有Python了,...

Python列表list排列组合操作示例

本文实例讲述了Python列表list排列组合操作。分享给大家供大家参考,具体如下: 排列 例如: 输入为 ['1','2','3']和3 输出为 ['111','112','11...

pandas string转dataframe的方法

今天业务上碰到用pandas处理一个大文件的内存不够问题,需要做concat 合并多个文件,每个文件数据在1.4亿行左右。当时第一反应是把dataframe分割成多块小文件处理,后面发现...