numpy.linalg.eig() 计算矩阵特征向量方式

yipeiwu_com6年前Python基础

在PCA中有遇到,在这里记录一下

计算矩阵的特征值个特征向量,下面给出几个示例代码:

在使用前需要单独import一下

>>> from numpy import linalg as LA
>>> w, v = LA.eig(np.diag((1, 2, 3)))
>>> w; v
array([ 1., 2., 3.])
array([[ 1., 0., 0.],
    [ 0., 1., 0.],
    [ 0., 0., 1.]])
>>> w, v = LA.eig(np.array([[1, -1], [1, 1]]))
>>> w; v
array([ 1. + 1.j, 1. - 1.j])
array([[ 0.70710678+0.j    , 0.70710678+0.j    ],
    [ 0.00000000-0.70710678j, 0.00000000+0.70710678j]])
>>> a = np.array([[1, 1j], [-1j, 1]])
>>> w, v = LA.eig(a)
>>> w; v
array([ 2.00000000e+00+0.j,  5.98651912e-36+0.j]) # i.e., {2, 0}
array([[ 0.00000000+0.70710678j, 0.70710678+0.j    ],
    [ 0.70710678+0.j    , 0.00000000+0.70710678j]])
>>> a = np.array([[1 + 1e-9, 0], [0, 1 - 1e-9]])
>>> # Theor. e-values are 1 +/- 1e-9
>>> w, v = LA.eig(a)
>>> w; v
array([ 1., 1.])
array([[ 1., 0.],
    [ 0., 1.]])

官方文档链接:http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html

以上这篇numpy.linalg.eig() 计算矩阵特征向量方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python检测主机的连通性并记录到文件的实例

目录结构 ping_test/ ├── bin │ ├── ping.py │ ├── ping_run.sh.origin │ └── ping.sh ├── conf │ └──...

pycharm 使用心得(四)显示行号

pycharm 使用心得(四)显示行号

在PyCharm 里,显示行号有两种办法: 1,临时设置。右键单击行号处,选择 Show Line Numbers。 但是这种方法,只对一个文件有效,并且,重启PyCharm 后消失。...

python实现上传文件到linux指定目录的方法

python实现上传文件到linux指定目录的方法

今天接到一个小需求,就是想在windows环境下,上传压缩文件到linux指定的目录位置并且解压出来,然后我想了一下,这个可以用python试试写下。 环境: 1.linux操作系统一台...

Python数据持久化存储实现方法分析

本文实例讲述了Python数据持久化存储实现方法。分享给大家供大家参考,具体如下: 1、pymongo的使用 前三步为创建对象 第一步创建连接对象 conn = pymong...

python 2.7.13 安装配置方法图文教程

python 2.7.13 安装配置方法图文教程

本文记录了python安装及环境配置方法,具体内容如下 Python安装 Windowns操作系统中安装Python 步骤一 下载安装包 从Python网站下载Python的安装包 这...