numpy.linalg.eig() 计算矩阵特征向量方式

yipeiwu_com6年前Python基础

在PCA中有遇到,在这里记录一下

计算矩阵的特征值个特征向量,下面给出几个示例代码:

在使用前需要单独import一下

>>> from numpy import linalg as LA
>>> w, v = LA.eig(np.diag((1, 2, 3)))
>>> w; v
array([ 1., 2., 3.])
array([[ 1., 0., 0.],
    [ 0., 1., 0.],
    [ 0., 0., 1.]])
>>> w, v = LA.eig(np.array([[1, -1], [1, 1]]))
>>> w; v
array([ 1. + 1.j, 1. - 1.j])
array([[ 0.70710678+0.j    , 0.70710678+0.j    ],
    [ 0.00000000-0.70710678j, 0.00000000+0.70710678j]])
>>> a = np.array([[1, 1j], [-1j, 1]])
>>> w, v = LA.eig(a)
>>> w; v
array([ 2.00000000e+00+0.j,  5.98651912e-36+0.j]) # i.e., {2, 0}
array([[ 0.00000000+0.70710678j, 0.70710678+0.j    ],
    [ 0.70710678+0.j    , 0.00000000+0.70710678j]])
>>> a = np.array([[1 + 1e-9, 0], [0, 1 - 1e-9]])
>>> # Theor. e-values are 1 +/- 1e-9
>>> w, v = LA.eig(a)
>>> w; v
array([ 1., 1.])
array([[ 1., 0.],
    [ 0., 1.]])

官方文档链接:http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html

以上这篇numpy.linalg.eig() 计算矩阵特征向量方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Django为窗体加上防机器人的验证码功能过程解析

Django为窗体加上防机器人的验证码功能过程解析

这里我们使用 django-simple-captcha 模块,官方介绍如下:https://github.com/mbi/django-simple-captcha 一键安装: p...

解决tensorflow1.x版本加载saver.restore目录报错的问题

这个错误是最新的错误哈,目前只在tensorflow上的github仓库上面有提出,所以你在百度上面找不到。 是个tensorflow的bug十天前提出的,只有github仓库上一个地方...

使用70行Python代码实现一个递归下降解析器的教程

 第一步:标记化 处理表达式的第一步就是将其转化为包含一个个独立符号的列表。这一步很简单,且不是本文的重点,因此在此处我省略了很多。 首先,我定义了一些标记(数字不在此中,它们...

Python 可变类型和不可变类型及引用过程解析

在Python中定义一个数据便在内存中开辟一片空间来存储这个变量的值,这块已经被分配的内存空间便会有一个内存地址。访问这块内存需要用到变量名,变量名实际存储的是变量的地址在内存中的地址,...

Python3中的2to3转换工具使用示例

python3与python2的还是有诸多的不同,比如说在2中: 复制代码 代码如下: print "Hello,World!"  raw_input()  在...