numpy.linalg.eig() 计算矩阵特征向量方式

yipeiwu_com6年前Python基础

在PCA中有遇到,在这里记录一下

计算矩阵的特征值个特征向量,下面给出几个示例代码:

在使用前需要单独import一下

>>> from numpy import linalg as LA
>>> w, v = LA.eig(np.diag((1, 2, 3)))
>>> w; v
array([ 1., 2., 3.])
array([[ 1., 0., 0.],
    [ 0., 1., 0.],
    [ 0., 0., 1.]])
>>> w, v = LA.eig(np.array([[1, -1], [1, 1]]))
>>> w; v
array([ 1. + 1.j, 1. - 1.j])
array([[ 0.70710678+0.j    , 0.70710678+0.j    ],
    [ 0.00000000-0.70710678j, 0.00000000+0.70710678j]])
>>> a = np.array([[1, 1j], [-1j, 1]])
>>> w, v = LA.eig(a)
>>> w; v
array([ 2.00000000e+00+0.j,  5.98651912e-36+0.j]) # i.e., {2, 0}
array([[ 0.00000000+0.70710678j, 0.70710678+0.j    ],
    [ 0.70710678+0.j    , 0.00000000+0.70710678j]])
>>> a = np.array([[1 + 1e-9, 0], [0, 1 - 1e-9]])
>>> # Theor. e-values are 1 +/- 1e-9
>>> w, v = LA.eig(a)
>>> w; v
array([ 1., 1.])
array([[ 1., 0.],
    [ 0., 1.]])

官方文档链接:http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html

以上这篇numpy.linalg.eig() 计算矩阵特征向量方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python制作图片缩略图

python制作图片缩略图

缩略图 在很多时候我们都需要将图片按照同比例缩小有利于存储 但是一张张手动去改的话太麻烦了 今天我们就用python实现一个简单的将一个文件夹中的所有图片进行指定大小的调整 缩略前:...

pytorch 图像预处理之减去均值,除以方差的实例

pytorch 图像预处理之减去均值,除以方差的实例

如下所示: #coding=gbk ''' GPU上面的环境变化太复杂,这里我直接给出在笔记本CPU上面的运行时间结果 由于方式3需要将tensor转换到GPU上面,这一过程很消...

Python基于PycURL自动处理cookie的方法

本文实例讲述了Python基于PycURL自动处理cookie的方法。分享给大家供大家参考。具体如下: import pycurl import StringIO url = "ht...

pycharm安装图文教程

pycharm安装图文教程

pycharm是编辑python很好使用的工具。下面看看如何安装pycharm 工具/原料:pycharm安装包 方法/步骤: 在网上下载pycharm安装包,比如下面这种格式。 双击...

Python3.5常见内置方法参数用法实例详解

本文实例讲述了Python3.5常见内置方法参数用法。分享给大家供大家参考,具体如下: Python的内置方法参数详解网站为:https://docs.python.org/3/libr...