numpy.linalg.eig() 计算矩阵特征向量方式

yipeiwu_com6年前Python基础

在PCA中有遇到,在这里记录一下

计算矩阵的特征值个特征向量,下面给出几个示例代码:

在使用前需要单独import一下

>>> from numpy import linalg as LA
>>> w, v = LA.eig(np.diag((1, 2, 3)))
>>> w; v
array([ 1., 2., 3.])
array([[ 1., 0., 0.],
    [ 0., 1., 0.],
    [ 0., 0., 1.]])
>>> w, v = LA.eig(np.array([[1, -1], [1, 1]]))
>>> w; v
array([ 1. + 1.j, 1. - 1.j])
array([[ 0.70710678+0.j    , 0.70710678+0.j    ],
    [ 0.00000000-0.70710678j, 0.00000000+0.70710678j]])
>>> a = np.array([[1, 1j], [-1j, 1]])
>>> w, v = LA.eig(a)
>>> w; v
array([ 2.00000000e+00+0.j,  5.98651912e-36+0.j]) # i.e., {2, 0}
array([[ 0.00000000+0.70710678j, 0.70710678+0.j    ],
    [ 0.70710678+0.j    , 0.00000000+0.70710678j]])
>>> a = np.array([[1 + 1e-9, 0], [0, 1 - 1e-9]])
>>> # Theor. e-values are 1 +/- 1e-9
>>> w, v = LA.eig(a)
>>> w; v
array([ 1., 1.])
array([[ 1., 0.],
    [ 0., 1.]])

官方文档链接:http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html

以上这篇numpy.linalg.eig() 计算矩阵特征向量方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python web框架Flask实现图形验证码及验证码的动态刷新实例

下列代码都是以自己的项目实例讲述的,相关的文本内容很少,主要说明全在代码注释中 自制图形验证码 这里所说的图形验证码都是自制的图形,通过画布、画笔、画笔字体的颜色绘制而成的。将验证码封装...

详解Python中的文本处理

字符串 -- 不可改变的序列 如同大多数高级编程语言一样,变长字符串是 Python 中的基本类型。Python 在“后台”分配内存以保存字符串(或其它值),程序员不必为此操心。Pyth...

基于sklearn实现Bagging算法(python)

基于sklearn实现Bagging算法(python)

本文使用的数据类型是数值型,每一个样本6个特征表示,所用的数据如图所示: 图中A,B,C,D,E,F列表示六个特征,G表示样本标签。每一行数据即为一个样本的六个特征和标签。 实现Bag...

在Python的Django框架中编写编译函数

当遇到一个模板标签(template tag)时,模板解析器就会把标签包含的内容,以及模板解析器自己作为参数调用一个python函数。 这个函数负责返回一个和当前模板标签内容相对应的节点...

python实现斐波那契递归函数的方法

本文以一个简单的实例讲述了python实现斐波那契数列数列递归函数的方法,代码精简易懂。分享给大家供大家参考之用。 主要函数代码如下: def fab(n): if n==1:...