Python实现把多维数组展开成DataFrame

yipeiwu_com6年前Python基础

如下所示:

import numpy as np
import pandas as pd

################# 准备数据 #################
a1 = np.arange(1,101)
a3 = a1.reshape((2,5,10))
a3
'''
array([[[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
  [ 11, 12, 13, 14, 15, 16, 17, 18, 19, 20],
  [ 21, 22, 23, 24, 25, 26, 27, 28, 29, 30],
  [ 31, 32, 33, 34, 35, 36, 37, 38, 39, 40],
  [ 41, 42, 43, 44, 45, 46, 47, 48, 49, 50]],  
  [[ 51, 52, 53, 54, 55, 56, 57, 58, 59, 60],
  [ 61, 62, 63, 64, 65, 66, 67, 68, 69, 70],
  [ 71, 72, 73, 74, 75, 76, 77, 78, 79, 80],
  [ 81, 82, 83, 84, 85, 86, 87, 88, 89, 90],
  [ 91, 92, 93, 94, 95, 96, 97, 98, 99, 100]]])
'''

################# 准备标签 #################
# 第 1 维的标签
index1 = pd.Series(np.arange(1,11))
index1 = index1.astype(str)
index1 = 'A'+index1
index1
'''
0  A1
1  A2
2  A3
3  A4
4  A5
5  A6
6  A7
7  A8
8  A9
9 A10
'''

# 第 2 维的标签
index2 = pd.Series(np.arange(1,6))
index2 = index2.astype(str)
index2 = 'B'+index2
index2
'''
0 B1
1 B2
2 B3
3 B4
4 B5
'''

# 第 3 维的标签
index3 = pd.Series(np.arange(1,3))
index3 = index3.astype(str)
index3 = 'C'+index3
index3
'''
0 C1
1 C2
'''

################# 展开数据 #################
# 把三维数组展开
value = a3.flatten()
value = pd.Series(value)
value.name = 'value'
value
'''
0  1
1  2
2  3
  ... 
97  98
98  99
99 100
Name: value, Length: 100, dtype: int64
'''

################# 展开标签 #################
import itertools

# index的笛卡尔乘积。注意:高维在前,低维在后
prod = itertools.product(index3, index2, index1 )
# 转换为DataFrame
prod = pd.DataFrame([x for x in prod])
prod.columns = ['C', 'B', 'A']
prod.T
'''
 0 1 2 3 4 5 6 7 8 9 ... 90 91 92 93 94 95 96 \
C C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 ... C2 C2 C2 C2 C2 C2 C2 
B B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 ... B5 B5 B5 B5 B5 B5 B5 
A A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 ... A1 A2 A3 A4 A5 A6 A7 
 97 98 99 
C C2 C2 C2 
B B5 B5 B5 
A A8 A9 A10 
[3 rows x 100 columns]
'''

################# 最终数据 #################
# 合并成一个DataFrame
pd.concat([prod, value], axis=1)
'''
  C B A value
0 C1 B1 A1  1
1 C1 B1 A2  2
2 C1 B1 A3  3
3 C1 B1 A4  4
4 C1 B1 A5  5
5 C1 B1 A6  6
6 C1 B1 A7  7
7 C1 B1 A8  8
8 C1 B1 A9  9
9 C1 B1 A10  10
10 C1 B2 A1  11
11 C1 B2 A2  12
12 C1 B2 A3  13
13 C1 B2 A4  14
14 C1 B2 A5  15
15 C1 B2 A6  16
16 C1 B2 A7  17
17 C1 B2 A8  18
18 C1 B2 A9  19
19 C1 B2 A10  20
20 C1 B3 A1  21
21 C1 B3 A2  22
22 C1 B3 A3  23
23 C1 B3 A4  24
24 C1 B3 A5  25
25 C1 B3 A6  26
26 C1 B3 A7  27
27 C1 B3 A8  28
28 C1 B3 A9  29
29 C1 B3 A10  30
.. .. .. ... ...
70 C2 B3 A1  71
71 C2 B3 A2  72
72 C2 B3 A3  73
73 C2 B3 A4  74
74 C2 B3 A5  75
75 C2 B3 A6  76
76 C2 B3 A7  77
77 C2 B3 A8  78
78 C2 B3 A9  79
79 C2 B3 A10  80
80 C2 B4 A1  81
81 C2 B4 A2  82
82 C2 B4 A3  83
83 C2 B4 A4  84
84 C2 B4 A5  85
85 C2 B4 A6  86
86 C2 B4 A7  87
87 C2 B4 A8  88
88 C2 B4 A9  89
89 C2 B4 A10  90
90 C2 B5 A1  91
91 C2 B5 A2  92
92 C2 B5 A3  93
93 C2 B5 A4  94
94 C2 B5 A5  95
95 C2 B5 A6  96
96 C2 B5 A7  97
97 C2 B5 A8  98
98 C2 B5 A9  99
99 C2 B5 A10 100
[100 rows x 4 columns]
'''

以上这篇Python实现把多维数组展开成DataFrame就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python实现单线程多任务非阻塞TCP服务端

本文实例为大家分享了python实现单线程多任务非阻塞TCP服务端的具体代码,供大家参考,具体内容如下 # coding:utf-8 from socket import * #...

解析python的局部变量和全局变量

局部变量 什么是局部变量 通俗定义:函数内部定义的变量就叫局部变量。 话不多说,代码如下: def test1(): a = 300 # 定义一个局部变量a,并初始化300 pr...

Python中Continue语句的用法的举例详解

Python中Continue语句的用法的举例详解

 Python continue语句返回while循环的开始。Continue语句拒绝在该循环的当前迭代中的其余语句执行并移动控制返回到循环的顶部(开始位置)。 continu...

Python如何调用JS文件中的函数

Python如何调用JS文件中的函数

Python 调用JS文件中的函数方法如下 1、安装PyExecJS第三方库 2、导入库:import execjs 3、调用JS文件中的方法 Passwd = execjs.c...

深入理解python try异常处理机制

深入理解python try异常处理机制 #python的try语句有两种风格 #一:种是处理异常(try/except/else) #二:种是无论是否发生异常都将执行最后的代码(t...