Python实现把多维数组展开成DataFrame

yipeiwu_com6年前Python基础

如下所示:

import numpy as np
import pandas as pd

################# 准备数据 #################
a1 = np.arange(1,101)
a3 = a1.reshape((2,5,10))
a3
'''
array([[[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
  [ 11, 12, 13, 14, 15, 16, 17, 18, 19, 20],
  [ 21, 22, 23, 24, 25, 26, 27, 28, 29, 30],
  [ 31, 32, 33, 34, 35, 36, 37, 38, 39, 40],
  [ 41, 42, 43, 44, 45, 46, 47, 48, 49, 50]],  
  [[ 51, 52, 53, 54, 55, 56, 57, 58, 59, 60],
  [ 61, 62, 63, 64, 65, 66, 67, 68, 69, 70],
  [ 71, 72, 73, 74, 75, 76, 77, 78, 79, 80],
  [ 81, 82, 83, 84, 85, 86, 87, 88, 89, 90],
  [ 91, 92, 93, 94, 95, 96, 97, 98, 99, 100]]])
'''

################# 准备标签 #################
# 第 1 维的标签
index1 = pd.Series(np.arange(1,11))
index1 = index1.astype(str)
index1 = 'A'+index1
index1
'''
0  A1
1  A2
2  A3
3  A4
4  A5
5  A6
6  A7
7  A8
8  A9
9 A10
'''

# 第 2 维的标签
index2 = pd.Series(np.arange(1,6))
index2 = index2.astype(str)
index2 = 'B'+index2
index2
'''
0 B1
1 B2
2 B3
3 B4
4 B5
'''

# 第 3 维的标签
index3 = pd.Series(np.arange(1,3))
index3 = index3.astype(str)
index3 = 'C'+index3
index3
'''
0 C1
1 C2
'''

################# 展开数据 #################
# 把三维数组展开
value = a3.flatten()
value = pd.Series(value)
value.name = 'value'
value
'''
0  1
1  2
2  3
  ... 
97  98
98  99
99 100
Name: value, Length: 100, dtype: int64
'''

################# 展开标签 #################
import itertools

# index的笛卡尔乘积。注意:高维在前,低维在后
prod = itertools.product(index3, index2, index1 )
# 转换为DataFrame
prod = pd.DataFrame([x for x in prod])
prod.columns = ['C', 'B', 'A']
prod.T
'''
 0 1 2 3 4 5 6 7 8 9 ... 90 91 92 93 94 95 96 \
C C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 ... C2 C2 C2 C2 C2 C2 C2 
B B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 ... B5 B5 B5 B5 B5 B5 B5 
A A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 ... A1 A2 A3 A4 A5 A6 A7 
 97 98 99 
C C2 C2 C2 
B B5 B5 B5 
A A8 A9 A10 
[3 rows x 100 columns]
'''

################# 最终数据 #################
# 合并成一个DataFrame
pd.concat([prod, value], axis=1)
'''
  C B A value
0 C1 B1 A1  1
1 C1 B1 A2  2
2 C1 B1 A3  3
3 C1 B1 A4  4
4 C1 B1 A5  5
5 C1 B1 A6  6
6 C1 B1 A7  7
7 C1 B1 A8  8
8 C1 B1 A9  9
9 C1 B1 A10  10
10 C1 B2 A1  11
11 C1 B2 A2  12
12 C1 B2 A3  13
13 C1 B2 A4  14
14 C1 B2 A5  15
15 C1 B2 A6  16
16 C1 B2 A7  17
17 C1 B2 A8  18
18 C1 B2 A9  19
19 C1 B2 A10  20
20 C1 B3 A1  21
21 C1 B3 A2  22
22 C1 B3 A3  23
23 C1 B3 A4  24
24 C1 B3 A5  25
25 C1 B3 A6  26
26 C1 B3 A7  27
27 C1 B3 A8  28
28 C1 B3 A9  29
29 C1 B3 A10  30
.. .. .. ... ...
70 C2 B3 A1  71
71 C2 B3 A2  72
72 C2 B3 A3  73
73 C2 B3 A4  74
74 C2 B3 A5  75
75 C2 B3 A6  76
76 C2 B3 A7  77
77 C2 B3 A8  78
78 C2 B3 A9  79
79 C2 B3 A10  80
80 C2 B4 A1  81
81 C2 B4 A2  82
82 C2 B4 A3  83
83 C2 B4 A4  84
84 C2 B4 A5  85
85 C2 B4 A6  86
86 C2 B4 A7  87
87 C2 B4 A8  88
88 C2 B4 A9  89
89 C2 B4 A10  90
90 C2 B5 A1  91
91 C2 B5 A2  92
92 C2 B5 A3  93
93 C2 B5 A4  94
94 C2 B5 A5  95
95 C2 B5 A6  96
96 C2 B5 A7  97
97 C2 B5 A8  98
98 C2 B5 A9  99
99 C2 B5 A10 100
[100 rows x 4 columns]
'''

以上这篇Python实现把多维数组展开成DataFrame就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python程序 线程队列queue使用方法解析

一、线程队列 queue队列:使用方法同进程的Queue一样 如果必须在多个线程之间安全地交换信息时,队列在线程编程中尤其有用。 重要: q.put() :往队列里面放值,当参数blo...

从局部变量和全局变量开始全面解析Python中变量的作用域

理解全局变量和局部变量 1.定义的函数内部的变量名如果是第一次出现, 且在=符号前,那么就可以认为是被定义为局部变量。在这种情况下,不论全局变量中是否用到该变量名,函数中使用的都是局部变...

tensorflow TFRecords文件的生成和读取的方法

TensorFlow提供了TFRecords的格式来统一存储数据,理论上,TFRecords可以存储任何形式的数据。 TFRecords文件中的数据都是通过tf.train.Examp...

Centos下实现安装Python3.6和Python2共存

写在前面 centos6.8中默认自带的python版本为python2.6,那么这里需要将其改为python3 下载并解压 官方下载地址为 https://www.python.o...

Python栈算法的实现与简单应用示例

Python栈算法的实现与简单应用示例

本文实例讲述了Python栈算法的实现与简单应用。分享给大家供大家参考,具体如下: 原理: 栈作为一种数据结构,是一种只能在一端进行插入和删除操作。它按照先进后出的原则存储数据,先进入的...