numpy ndarray 取出满足特定条件的某些行实例

yipeiwu_com5年前Python基础

在进行物体检测的ground truth boxes annotations包围框坐标数据整理时,需要实现这样的功能:

numpy里面,对于N*4的数组,要实现对于每一行,如果第3列和第1列数值相等或者第2列和第0列数值相等,就删除这一行,要返回保留下来的numpy数组 shape M*4

对于numpy数组的操作要尽量避免for循环,因为numpy数组支持布尔索引。

import numpy as np

a1=np.array(
  [1,0,1,5]
)
a2=np.array(
  [0,8,5,8]
)
center=np.random.randint(0,10,size=(3,4))
# print(a1.shape,a2.shape,center.shape)
b=np.vstack((a1,center,a2))
'''

numpy vstack 所输入的参数必须是list或者tuple的iterable对象,在竖直方向上进行数组拼接

其中list或者tuple中的每个元素是numpy.ndarray类型

它们必须具有相同的列数,拼接完成后行数增加

numpy hstack 在水平方向上进行数组拼接

进行拼接的数组必须具有相同的行数,拼接完成后列数增加

'''
print(b.shape,b)
out=b[b[:,3]!=b[:,1]]
out2=out[out[:,2]!=out[:,0]]
print(out2.shape,out2)
'''
(5, 4) 
[[1 0 1 5]
 [6 9 9 1]
 [9 1 6 5]
 [2 8 8 1]
 [0 8 5 8]]
(3, 4) 
[[6 9 9 1]
 [9 1 6 5]
 [2 8 8 1]]
'''
b1=a1.reshape(-1,1)
b2=a2.reshape(-1,1)
before_list=[]
before_list.append(b1)
before_list.append(center.reshape(4,3))
before_list.append(b2)
out3=np.hstack(before_list)
print(out3.shape)#(4, 5)

以上这篇numpy ndarray 取出满足特定条件的某些行实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python打包压缩、读取指定目录下的指定类型文件

下面通过代码给大家介绍python打包压缩指定目录下的指定类型文件,具体代码如下所示: import os import datetime import tarfile import...

python实现simhash算法实例

python实现simhash算法实例

Simhash的算法简单的来说就是,从海量文本中快速搜索和已知simhash相差小于k位的simhash集合,这里每个文本都可以用一个simhash值来代表,一个simhash有64bi...

人工神经网络算法知识点总结

人工神经网络算法知识点总结

人工神经网络的许多算法已在智能信息处理系统中获得广泛采用,尤为突出是是以下4种算法:ART网络、LVQ网络、Kohonen网络Hopfield网络,下面就具体介绍一下这这四种算法: 1....

利用Python进行数据可视化常见的9种方法!超实用!

利用Python进行数据可视化常见的9种方法!超实用!

前言 如同艺术家们用绘画让人们更贴切的感知世界,数据可视化也能让人们更直观的传递数据所要表达的信息。 我们今天就分享一下如何用 Python 简单便捷的完成数据可视化。 其实利用 Pyt...

python中zip()方法应用实例分析

本文实例分析了python中zip()方法的应用。分享给大家供大家参考,具体如下: 假设有一个集合set, 需要对set中的每个元素指定一个唯一的id,从而组建成一个dict结构。 这个...