python二分法查找算法实现方法【递归与非递归】

yipeiwu_com6年前Python基础

本文实例讲述了python二分法查找算法实现方法。分享给大家供大家参考,具体如下:

二分法查找

二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。

二分法查找实现

(非递归实现)

def binary_search(alist, item):
  first = 0
  last = len(alist)-1
  while first<=last:
    midpoint = (first + last)/2
    if alist[midpoint] == item:
      return True
    elif item < alist[midpoint]:
      last = midpoint-1
    else:
      first = midpoint+1
  return False
testlist = [0, 1, 2, 8, 13, 17, 19, 32, 42,]
print(binary_search(testlist, 3))
print(binary_search(testlist, 13))

(递归实现)

def binary_search(alist, item):
  if len(alist) == 0:
    return False
  else:
    midpoint = len(alist)//2
    if alist[midpoint]==item:
      return True
    else:
      if item<alist[midpoint]:
        return binary_search(alist[:midpoint],item)
      else:
        return binary_search(alist[midpoint+1:],item)
testlist = [0, 1, 2, 8, 13, 17, 19, 32, 42,]
print(binary_search(testlist, 3))
print(binary_search(testlist, 13))

运行结果:

False
True

时间复杂度

  • 最优时间复杂度:O(1)
  • 最坏时间复杂度:O(logn)

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python列表(list)操作技巧总结》、《Python编码操作技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程

希望本文所述对大家Python程序设计有所帮助。

相关文章

10 行Python 代码实现 AI 目标检测技术【推荐】

10 行Python 代码实现 AI 目标检测技术【推荐】

只需10行Python代码,我们就能实现计算机视觉中目标检测。 from imageai.Detection import ObjectDetection import os ex...

Python基于生成器迭代实现的八皇后问题示例

本文实例讲述了Python基于生成器迭代实现的八皇后问题。分享给大家供大家参考,具体如下: 问题:有一个棋盘和8个要放到上面的皇后,唯一的要求是皇后之间不能形成威胁。也就是说,必须把他们...

从运行效率与开发效率比较Python和C++

之前有人一直在说python怎么怎么好用,也有人说C++太难了,下面我做了一些笔记: 1、运行效率:C++ >> Python Python代码和C++最终都会变成CPU指令...

python字符串连接的N种方式总结

python中有很多字符串连接方式,今天在写代码,顺便总结一下: 最原始的字符串连接方式:str1 + str2 python 新字符串连接语法:str1, str2 奇怪的字符串方式:...

Python numpy 点数组去重的实例

废话不多说,直接上代码,有详细注释 # coding = utf-8 import numpy as np from IPython import embed # xy 输入,可支持...