Python Sympy计算梯度、散度和旋度的实例

yipeiwu_com6年前Python基础

sympy有个vector 模块,里面提供了求解标量场、向量场的梯度、散度、旋度等计算,官方参考连接:

http://docs.sympy.org/latest/modules/vector/index.html

sympy中计算梯度、散度和旋度主要有两种方式:

一个是使用∇∇算子,sympy提供了类Del(),该类的方法有:cross、dot和gradient,cross就是叉乘,计算旋度的,dot是点乘,用于计算散度,gradient自然就是计算梯度的。

另一种方法就是直接调用相关的API:curl、divergence和gradient,这些函数都在模块sympy.vector 下面。

使用sympy计算梯度、散度和旋度之前,首先要确定坐标系,sympy.vector模块里提供了构建坐标系的类,常见的是笛卡尔坐标系, CoordSys3D,根据下面的例子可以了解到相应应用。

(1)计算梯度

## 1 gradient

C = CoordSys3D('C')
delop = Del() # nabla算子

# 标量场 f = x**2*y-xy
f = C.x**2*C.y - C.x*C.y

res = delop.gradient(f, doit=True) # 使用nabla算子
# res = delop(f).doit()
res = gradient(f) # 直接使用gradient

print(res) # (2*C.x*C.y - C.y)*C.i + (C.x**2 - C.x)*C.j

(2)计算散度

## divergence

C = CoordSys3D('C')
delop = Del() # nabla算子

# 向量场 f = x**2*y*i-xy*j
f = C.x**2*C.y*C.i - C.x*C.y*C.j

res = delop.dot(f, doit=True)

# res = divergence(f)

print(res) # 2*C.x*C.y - C.x,即2xy-x,向量场的散度是标量

(3)计算旋度

## curl

C = CoordSys3D('C')
delop = Del() # nabla算子

# 向量场 f = x**2*y*i-xy*j
f = C.x**2*C.y*C.i - C.x*C.y*C.j

res = delop.cross(f, doit=True)

# res = curl(f)

print(res) # (-C.x**2 - C.y)*C.k,即(-x**2-y)*k,向量场的旋度是向量

以上这篇Python Sympy计算梯度、散度和旋度的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

用vue.js组件模拟v-model指令实例方法

1、问题描述 在使用v-model指令实现输入框数据双向绑定,输入值时对应的这个变量的值也随着变化;但是这里不允许使用v-model,需要写一个组件实现v-model指令效果 <...

批量将ppt转换为pdf的Python代码 只要27行!

这是一个Python脚本,能够批量地将微软Powerpoint文件(.ppt或者.pptx)转换为pdf格式。 使用说明 1、将这个脚本跟PPT文件放置在同一个文件夹下。 2、运行这个脚...

让你的Python代码实现类型提示功能

Python是一种动态类型语言,这意味着我们在编写代码的时候更为自由,但是与此同时IDE无法向静态类型语言那样分析代码,及时给我们相应的提示。为了解决这个问题,Python 3.6 新增...

python线程安全及多进程多线程实现方法详解

进程和线程的区别 进程是对运行时程序的封装,是系统资源调度和分配的基本单位 线程是进程的子任务,cpu调度和分配的基本单位,实现进程内并发。 一个进程可以包含多个线程,线...

Python使用smtplib模块发送电子邮件的流程详解

Python使用smtplib模块发送电子邮件的流程详解

1、登录SMTP服务器 首先使用网上的方法(这里使用163邮箱,smtp.163.com是smtp服务器地址,25为端口号): import smtplib server = smt...