Python Sympy计算梯度、散度和旋度的实例

yipeiwu_com5年前Python基础

sympy有个vector 模块,里面提供了求解标量场、向量场的梯度、散度、旋度等计算,官方参考连接:

http://docs.sympy.org/latest/modules/vector/index.html

sympy中计算梯度、散度和旋度主要有两种方式:

一个是使用∇∇算子,sympy提供了类Del(),该类的方法有:cross、dot和gradient,cross就是叉乘,计算旋度的,dot是点乘,用于计算散度,gradient自然就是计算梯度的。

另一种方法就是直接调用相关的API:curl、divergence和gradient,这些函数都在模块sympy.vector 下面。

使用sympy计算梯度、散度和旋度之前,首先要确定坐标系,sympy.vector模块里提供了构建坐标系的类,常见的是笛卡尔坐标系, CoordSys3D,根据下面的例子可以了解到相应应用。

(1)计算梯度

## 1 gradient

C = CoordSys3D('C')
delop = Del() # nabla算子

# 标量场 f = x**2*y-xy
f = C.x**2*C.y - C.x*C.y

res = delop.gradient(f, doit=True) # 使用nabla算子
# res = delop(f).doit()
res = gradient(f) # 直接使用gradient

print(res) # (2*C.x*C.y - C.y)*C.i + (C.x**2 - C.x)*C.j

(2)计算散度

## divergence

C = CoordSys3D('C')
delop = Del() # nabla算子

# 向量场 f = x**2*y*i-xy*j
f = C.x**2*C.y*C.i - C.x*C.y*C.j

res = delop.dot(f, doit=True)

# res = divergence(f)

print(res) # 2*C.x*C.y - C.x,即2xy-x,向量场的散度是标量

(3)计算旋度

## curl

C = CoordSys3D('C')
delop = Del() # nabla算子

# 向量场 f = x**2*y*i-xy*j
f = C.x**2*C.y*C.i - C.x*C.y*C.j

res = delop.cross(f, doit=True)

# res = curl(f)

print(res) # (-C.x**2 - C.y)*C.k,即(-x**2-y)*k,向量场的旋度是向量

以上这篇Python Sympy计算梯度、散度和旋度的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python wxPython库Core组件BoxSizer用法示例

Python wxPython库Core组件BoxSizer用法示例

本文实例讲述了Python wxPython库Core组件BoxSizer用法。分享给大家供大家参考,具体如下: wx.BoxSizer: box = wx.BoxSizer(int...

Python多线程同步Lock、RLock、Semaphore、Event实例

Python多线程同步Lock、RLock、Semaphore、Event实例

一、多线程同步 由于CPython的python解释器在单线程模式下执行,所以导致python的多线程在很多的时候并不能很好地发挥多核cpu的资源。大部分情况都推荐使用多进程。 pyth...

Python后台开发Django会话控制的实现

页面跳转 页面跳转的url中必须在最后会自动添加【\】,所以在urls.py的路由表中需要对应添加【\】 from django.shortcuts import redirect...

Python re模块介绍

Python中转义字符 正则表达式使用反斜杠” \ “来代表特殊形式或用作转义字符,这里跟Python的语法冲突,因此,Python用” \\\\ “表示正则表达式中的” \ “,因为正...

postman模拟访问具有Session的post请求方法

postman模拟访问具有Session的post请求方法

找Cookie 就等于具有了session 火狐浏览器的Cookie 谷歌浏览器的Cookie Network 点击URL 再点Headers 不同链接产生的Cookie 不同 接下...