python Jupyter运行时间实例过程解析

yipeiwu_com6年前Python基础

这篇文章主要介绍了python Jupyter运行时间实例过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

1.Python time time()方法

import time
time_start=time.time()
time_end=time.time()
print('totally cost',time_end-time_start)
import time

print "time.time(): %f " % time.time()
print time.localtime( time.time() )
print time.asctime( time.localtime(time.time()) )

以上实例输出结果为:

time.time(): 1234892919.655932
(2009, 2, 17, 10, 48, 39, 1, 48, 0)
Tue Feb 17 10:48:39 2009

Python time time() 返回当前时间的时间戳(1970纪元后经过的浮点秒数)

参数:NA。

返回值:返回当前时间的时间戳(1970纪元后经过的浮点秒数)。

2.Jupyter Magic - Timing(%%time %time %timeit)

对于计时有两个十分有用的魔法命令:%%time 和 %timeit. 如果你有些代码运行地十分缓慢,而你想确定是否问题出在这里,这两个命令将会非常方便。

(1).%%time 将会给出cell的代码运行一次所花费的时间。

%%time
import time
for _ in range(1000):
  time.sleep(0.01)# sleep for 0.01 seconds
 
output:
CPU times: user 196 ms, sys: 21.4 ms, total: 217 ms
Wall time: 11.6 s

(2).%time 将会给出当前行的代码运行一次所花费的时间。

import numpy
%time numpy.random.normal(size=1000)
output:
Wall time: 1e+03 µs

(3)%timeit 使用Python的timeit模块,它将会执行一个语句100,000次(默认情况下),然后给出运行最快3次的平均值。

import numpy
%timeit numpy.random.normal(size=100)
 
output:
12.8 µs ± 1.25 µs per loop (mean ± std. dev. of 7 runs, 100000 loops each)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python类的方法属性与方法属性的动态绑定代码详解

动态语言与静态语言有很多不同,最大的特性之一就是可以实现动态的对类和实例进行修改,在Python中,我们创建了一个类后可以对实例和类绑定心的方法或者属性,实现动态绑定。 最近在学习pyt...

python验证码识别教程之利用滴水算法分割图片

python验证码识别教程之利用滴水算法分割图片

滴水算法概述 滴水算法是一种用于分割手写粘连字符的算法,与以往的直线式地分割不同 ,它模拟水滴的滚动,通过水滴的滚动路径来分割字符,可以解决直线切割造成的过分分割问题。 引言 之前提过对...

Pytorch中实现只导入部分模型参数的方式

我们在做迁移学习,或者在分割,检测等任务想使用预训练好的模型,同时又有自己修改之后的结构,使得模型文件保存的参数,有一部分是不需要的(don't expected)。我们搭建的网络对保存...

Python 基础教程之闭包的使用方法

Python 基础教程之闭包的使用方法 前言: 闭包(closure)是函数式编程的重要的语法结构。函数式编程是一种编程范式 (而面向过程编程和面向对象编程也都是编程范式)。在面向过程编...

pandas.DataFrame.to_json按行转json的方法

最近需要将csv文件转成DataFrame并以json的形式展示到前台,故需要用到Dataframe的to_json方法 to_json方法默认以列名为键,列内容为值,形成{col1:[...