python Jupyter运行时间实例过程解析

yipeiwu_com6年前Python基础

这篇文章主要介绍了python Jupyter运行时间实例过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

1.Python time time()方法

import time
time_start=time.time()
time_end=time.time()
print('totally cost',time_end-time_start)
import time

print "time.time(): %f " % time.time()
print time.localtime( time.time() )
print time.asctime( time.localtime(time.time()) )

以上实例输出结果为:

time.time(): 1234892919.655932
(2009, 2, 17, 10, 48, 39, 1, 48, 0)
Tue Feb 17 10:48:39 2009

Python time time() 返回当前时间的时间戳(1970纪元后经过的浮点秒数)

参数:NA。

返回值:返回当前时间的时间戳(1970纪元后经过的浮点秒数)。

2.Jupyter Magic - Timing(%%time %time %timeit)

对于计时有两个十分有用的魔法命令:%%time 和 %timeit. 如果你有些代码运行地十分缓慢,而你想确定是否问题出在这里,这两个命令将会非常方便。

(1).%%time 将会给出cell的代码运行一次所花费的时间。

%%time
import time
for _ in range(1000):
  time.sleep(0.01)# sleep for 0.01 seconds
 
output:
CPU times: user 196 ms, sys: 21.4 ms, total: 217 ms
Wall time: 11.6 s

(2).%time 将会给出当前行的代码运行一次所花费的时间。

import numpy
%time numpy.random.normal(size=1000)
output:
Wall time: 1e+03 µs

(3)%timeit 使用Python的timeit模块,它将会执行一个语句100,000次(默认情况下),然后给出运行最快3次的平均值。

import numpy
%timeit numpy.random.normal(size=100)
 
output:
12.8 µs ± 1.25 µs per loop (mean ± std. dev. of 7 runs, 100000 loops each)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python有序查找算法之二分法实例分析

Python有序查找算法之二分法实例分析

本文实例讲述了Python有序查找算法之二分法。分享给大家供大家参考,具体如下: 二分法是一种快速查找的方法,时间复杂度低,逻辑简单易懂,总的来说就是不断的除以2除以2... 例如需要查...

Python中apply函数的用法实例教程

一、概述: python apply函数的具体含义如下:   apply(func [, args [, kwargs ]]) 函数用于当函数参数已经存在于一个元组或字典中时,...

利用信号如何监控Django模型对象字段值的变化详解

django信号系统 django自带一套信号发射系统来帮助我们在框架的不同位置传递信息.也就是说,当某一事件发生时,信号系统可以允许一个或多个发送者(senders)将通知或信号(...

Django 导出项目依赖库到 requirements.txt过程解析

虚拟环境: 使用 pip freeze pip freeze > requirements.txt # 这种方式推荐配合 virtualenv ,否则会把整个环境中的包都列...

简单介绍Python中的try和finally和with方法

用 Python 做一件很平常的事情: 打开文件, 逐行读入, 最后关掉文件; 进一步的需求是, 这也许是程序中一个可选的功能, 如果有任何问题, 比如文件无法打开, 或是读取出错, 那...