Python实现word2Vec model过程解析

yipeiwu_com6年前Python基础

这篇文章主要介绍了Python实现word2Vec model过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

import gensim, logging, os
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
import nltk

corpus = nltk.corpus.brown.sents()

fname = 'brown_skipgram.model'
if os.path.exists(fname):
  # load the file if it has already been trained, to save repeating the slow training step below
  model = gensim.models.Word2Vec.load(fname)
else:
  # can take a few minutes, grab a cuppa
  model = gensim.models.Word2Vec(corpus, size=100, min_count=5, workers=2, iter=50)
  model.save(fname)

words = "woman women man girl boy green blue".split()
for w1 in words:
  for w2 in words:
    print(w1, w2, model.similarity(w1, w2))

print(model.most_similar(positive=['woman', ''], topn=1))
print(model.similarity('woman', 'girl'))girl

在gensim模块中已经封装了13年提出的model--word2vec,所以我们直接开始建立模型

这是建立模型的过程,最后会出现saving Word2vec的语句,代表已经成功建立了模型

这是输入了 gorvement和news关键词后 所反馈的词语 --- administration, 他们之间的相关性是0.508

当我在输入 women 和 man ,他们显示的相关性的0.638 ,已经是非常高的一个数字。

值得一提的是,我用的语料库是直接从nltk里的brown语料库。其中大概包括了一些新闻之类的数据。

大家如果感兴趣的话,可以自己建立该模型,通过传入不同的语料库,来calc 一些term的 相关性噢

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python找出文件中使用率最高的汉字实例详解

本文实例讲述了Python找出文件中使用率最高的汉字的方法。分享给大家供大家参考。具体分析如下: 这是我初学Python时写的,为了简便,我并没在排序完后再去掉非中文字符,稍微会影响性能...

Python Tkinter GUI编程入门介绍

Python Tkinter GUI编程入门介绍

一、Tkinter介绍 Tkinter是一个python模块,是一个调用Tcl/Tk的接口,它是一个跨平台的脚本图形界面接口。Tkinter不是唯一的python图形编程接口,但是是其中...

python制作企业邮箱的爆破脚本

python制作企业邮箱的爆破脚本

按照师傅给的任务,写了一个企业邮箱的爆破脚本,后续还有FTP,SSH等一些爆破的脚本。 我先说下整体思路: 总体就是利用python的poplib模块来从pop3服务器上交互,根据获取的...

pymongo中聚合查询的使用方法

pymongo中聚合查询的使用方法

前言 在使用mongo数据库时,简单的查询基本上可以满足大多数的业务场景,但是试想一下,如果要统计某一荐在指定的数据中出现了多少次该怎么查询呢?笨的方法是使用find 将数据查询出来,再...

Python里隐藏的“禅”

在 python的lib目录里有一个:this.py,它其实是隐藏着一首诗,源码如下:复制代码 代码如下:s = """Gur Mra bs Clguba, ol Gvz Crgref...