Python实现微信好友的数据分析

yipeiwu_com6年前Python基础

基于微信开放的个人号接口python库itchat,实现对微信好友的获取,并对省份、性别、微信签名做数据分析。

效果:

直接上代码,建三个空文本文件stopwords.txt,newdit.txt、unionWords.txt,下载字体simhei.ttf或删除字体要求的代码,就可以直接运行。

 #wxfriends.py 2018-07-09
import itchat
import sys
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei']#绘图时可以显示中文
plt.rcParams['axes.unicode_minus']=False#绘图时可以显示中文
import jieba
import jieba.posseg as pseg
from scipy.misc import imread
from wordcloud import WordCloud
from os import path
#解决编码问题
non_bmp_map = dict.fromkeys(range(0x10000, sys.maxunicode + 1), 0xfffd)
 
 
#获取好友信息
def getFriends():
  friends = itchat.get_friends(update=True)[0:]
  flists = []
  for i in friends:
    fdict={}
    fdict['NickName']=i['NickName'].translate(non_bmp_map)
    if i['Sex'] == 1:
      fdict['Sex']='男'
    elif i['Sex'] == 2:
      fdict['Sex']='女'
    else:
      fdict['Sex']='雌雄同体'
    if i['Province'] == '':
      fdict['Province'] ='未知'
    else:
      fdict['Province']=i['Province']
    fdict['City']=i['City']
    fdict['Signature']=i['Signature']
    flists.append(fdict)
  return flists
 
 
#将好友信息保存成CSV
def saveCSV(lists):
  df = pd.DataFrame(lists)
  try:
    df.to_csv("wxfriends.csv",index = True,encoding='gb18030')
  except Exception as ret:
    print(ret)
  return df
 
 
#统计性别、省份字段  
def anysys(df):
  df_sex = pd.DataFrame(df['Sex'].value_counts())
  df_province = pd.DataFrame(df['Province'].value_counts()[:15])
  df_signature = pd.DataFrame(df['Signature'])
  return df_sex,df_province,df_signature
 
 
#绘制柱状图,并保存  
def draw_chart(df_list,x_feature):
  try:
    x = list(df_list.index)
    ylist = df_list.values
    y = []
    for i in ylist :
      for j in i:
        y.append(j)
    plt.bar(x,y,label=x_feature)
    plt.legend()
    plt.savefig(x_feature)
    plt.close()
  except:
    print("绘图失败")
 
 
#解析取个性签名构成列表   
def getSignList(signature):
  sig_list = []
  for i in signature.values:
    for j in i:
      sig_list.append(j.translate(non_bmp_map))
  return sig_list
 
 
#分词处理,并根据需要填写停用词、自定义词、合并词替换
def segmentWords(txtlist):
  stop_words = set(line.strip() for line in open('stopwords.txt', encoding='utf-8'))
  newslist = []
  #新增自定义词
  jieba.load_userdict("newdit.txt")
  for subject in txtlist:
    if subject.isspace():
      continue
    word_list = pseg.cut(subject)
    
    for word, flag in word_list:
      if not word in stop_words and flag == 'n' or flag == 'eng' and word !='span' and word !='class':
        newslist.append(word)
   #合并指定的相似词
  for line in open('unionWords.txt', encoding='utf-8'):
    newline = line.encode('utf-8').decode('utf-8-sig')  #解决\ufeff问题
    unionlist = newline.split("*")
    for j in range(1,len(unionlist)):
      #wordDict[unionlist[0]] += wordDict.pop(unionlist[j],0)
      for index,value in enumerate(newslist):
        if value == unionlist[j]:
          newslist[index] = unionlist[0] 
  return newslist
 
 
#高频词统计
def countWords(newslist):
  wordDict = {}
  for item in newslist:
    wordDict[item] = wordDict.get(item,0) + 1
  itemList = list(wordDict.items())
  itemList.sort(key=lambda x:x[1],reverse=True)    
  for i in range(100):
    word, count = itemList[i]
    print("{}:{}".format(word,count))
 
 
#绘制词云
def drawPlant(newslist):
  d = path.dirname(__file__)
  mask_image = imread(path.join(d, "timg.png"))
  content = ' '.join(newslist)
  wordcloud = WordCloud(font_path='simhei.ttf', background_color="white",width=1300,height=620, max_words=200).generate(content)  #mask=mask_image,
  # Display the generated image:
  plt.imshow(wordcloud)
  plt.axis("off")
  wordcloud.to_file('wordcloud.jpg')
  plt.show()
 
 
def main():
  #登陆微信
  itchat.auto_login()  # 登陆后不需要扫码  hotReload=True
  flists = getFriends()
  fdf = saveCSV(flists)
  df_sex,df_province,df_signature = anysys(fdf)
  draw_chart(df_sex,"性别")
  draw_chart(df_province,"省份")
  wordList = segmentWords(getSignList(df_signature))
  countWords(wordList)
  drawPlant(wordList)
  
main()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python利用神经网络解决非线性回归问题实例详解

Python利用神经网络解决非线性回归问题实例详解

本文实例讲述了Python利用神经网络解决非线性回归问题。分享给大家供大家参考,具体如下: 问题描述 现在我们通常使用神经网络进行分类,但是有时我们也会进行回归分析。 如本文的问题: 我...

python 将字符串转换成字典dict的各种方式总结

1)利用eval可以将字典格式的字符串与字典户转 》》》mstr = '{"name":"yct","age":10}' 转换为可以用的字典: 》》》eval(mstr), type(...

Python中使用item()方法遍历字典的例子

Python中使用item()方法遍历字典的例子

Python字典的遍历方法有好几种,其中一种是for...in,这个我就不说明,在Python了几乎随处都可见for...in。下面说的这种遍历方式是item()方法。 item() i...

解决Python安装后pip不能用的问题

解决Python安装后pip不能用的问题

本人电脑上的Python为3.5,安装在Windows上,虽然安装过程中选择了pip,但是在命令行输入pip后仍然不能成功,尝试一下方法,终于解决问题 1、使用下面的语句确保没有报错了...

简单了解Pandas缺失值处理方法

这篇文章主要介绍了简单了解Pandas缺失值处理方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 判断数据是否为NaN: pd....