python基于plotly实现画饼状图代码实例

yipeiwu_com6年前Python基础

这篇文章主要介绍了python基于plotly实现画饼状图代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

代码

import pandas as pd
import numpy as np
import plotly.plotly as py
import plotly.graph_objs as go

path = '/home/v-gazh/PycharmProjects/us_data/limit_code.csv'

df = pd.read_csv(path)
df.set_index(['code'], inplace=True)

# ST 占比
total_count = len(df)
st_count = len(df[df['isST']==1])
print(f'禁投池总数:{total_count}')
print(f'禁投池中ST个数:{st_count}') # f'禁投池中ST个数:{}'

# 成分股占比
sz50_count = len(df[df['isSz50']==1])
print(f'禁投池中上证50个数:{sz50_count}')
hs300_count = len(df[df['isHs300']==1])
print(f'禁投池中沪深300个数:{hs300_count}')
zz500_count = len(df[df['isZz500']==1])
print(f'禁投池中中证500个数:{zz500_count}')

# 退市占比
outdate_count = len(df['outDate'].dropna())
print(f'禁投池中退市股票个数:{outdate_count}')

# 非股票
not_stock = len(df[df['type']!=1])
print(f'禁投池中非股票个数:{not_stock} 【SZ006415 为基金:F006415 | SZ000000 代码错误】')

# 次新股
delta_df = pd.DataFrame((pd.to_datetime(df['date']) - pd.to_datetime(df['ipoDate'])))
new_stock = len(delta_df[delta_df[0] < pd.Timedelta('365 days')]) # 上市不满一年为次新股 
print(f'禁投池中次新股个数:{new_stock}')

# 市值小于30亿的股票
maketValue = len(df[df['maketValue'] < 3000000000])
print(f'市值小于30亿股票个数:{maketValue}')

# 画图
labels = ['股票总数', 'ST股票', '深证50', '沪深300', '中证500', '退市股票', '非股票', '次新股', '小市值']
values = [total_count, st_count, sz50_count, hs300_count, zz500_count, outdate_count, not_stock, new_stock, maketValue]

trace = go.Pie(labels=labels, values=values,textfont=dict(size=15),)
py.iplot([trace], filename='basic_pie_chart')

注:上面代码中,起主要作用的主要是

# 画图
labels = ['股票总数', 'ST股票', '深证50', '沪深300', '中证500', '退市股票', '非股票', '次新股', '小市值']
values = [total_count, st_count, sz50_count, hs300_count, zz500_count, outdate_count, not_stock, new_stock, maketValue]

trace = go.Pie(labels=labels, values=values,textfont=dict(size=15),)
py.iplot([trace], filename='basic_pie_chart')
values = [total_count, st_count, sz50_count, hs300_count, zz500_count, outdate_count, not_stock, new_stock, maketValue]

values 列表里的内容为int数值,对应上面的labels

图示

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

numpy linalg模块的具体使用方法

最近在看机器学习的 LogisticRegressor,BayesianLogisticRegressor算法,里面得到一阶导数矩阵g和二阶导数Hessian矩阵H的时候,用到...

Python连接Redis的基本配置方法

在Linux系统下Python连接Redis的基本配置方法具体操作步骤 系统环境: OS:Oracle Linux Enterprise 5.6 Redis:redis-2.6.8 Py...

从零学Python之入门(四)运算

Python的运算符和其他语言类似 (我们暂时只了解这些运算符的基本用法,方便我们展开后面的内容,高级应用暂时不介绍) 数学运算 复制代码 代码如下:>>>print...

Python使用正则表达式分割字符串的实现方法

如下: re.split(pattern, string, [maxsplit], [flags]) pattern:表示模式字符串,由要匹配的正则表达式转换而来。 string...

对于Python的Django框架部署的一些建议

“Django应用、配置文件以及其他各种相关目录的最佳布局是什么样的?” 总是有朋友问我们这个问题,因此我想花一点时间,写一下我们究竟是如何看待这个问题的,这样我们就可以很容易让其他人参...