利用OpenCV和Python实现查找图片差异

yipeiwu_com5年前Python基础

使用OpenCV和Python查找图片差异

flyfish

方法1 均方误差的算法(Mean Squared Error , MSE)

下面的一些表达与《TensorFlow - 协方差矩阵》式子表达式一样的

拟合 误差平方和( sum of squared errors)

residual sum of squares (RSS), also known as the sum of squared residuals (SSR) or the sum of squared errors of prediction (SSE),
also known as 就我们所说的
RSS, SSR ,SSE表达的是一个意思

def mse(imageA, imageB):
 # the 'Mean Squared Error' between the two images is the
 # sum of the squared difference between the two images;
 # NOTE: the two images must have the same dimension
 err = np.sum((imageA.astype("float") - imageB.astype("float")) ** 2)
 err /= float(imageA.shape[0] * imageA.shape[1])

 # return the MSE, the lower the error, the more "similar"
 # the two images are
 return err

方法2 SSIM

​structural similarity index measurement (SSIM) system

一种衡量两幅图像结构相似度的新指标,其值越大越好,最大为1。

新建一个Python文件,命名为 image_diff.py

原文

Image Difference with OpenCV and Python

原理

根据参数读取两张图片并转换为灰度:

使用SSIM计算两个图像之间的差异,这种方法已经在scikit-image 库中实现

在两个图像之间的不同部分绘制矩形边界框。

代码如下 已编译通过

from skimage.measure import compare_ssim
#~ import skimage as ssim
import argparse
import imutils
import cv2

# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-f", "--first", required=True,
 help="first input image")
ap.add_argument("-s", "--second", required=True,
 help="second")
args = vars(ap.parse_args())
# load the two input images
imageA = cv2.imread(args["first"])
imageB = cv2.imread(args["second"])
'''
imageA = cv2.imread("E:\\1.png")
imageB = cv2.imread("E:\\2.png")
'''
# convert the images to grayscale
grayA = cv2.cvtColor(imageA, cv2.COLOR_BGR2GRAY)
grayB = cv2.cvtColor(imageB, cv2.COLOR_BGR2GRAY)

# compute the Structural Similarity Index (SSIM) between the two
# images, ensuring that the difference image is returned
#​structural similarity index measurement (SSIM) system一种衡量两幅图像结构相似度的新指标,其值越大越好,最大为1。

(score, diff) = compare_ssim(grayA, grayB, full=True)
diff = (diff * 255).astype("uint8")
print("SSIM: {}".format(score))

# threshold the difference image, followed by finding contours to
# obtain the regions of the two input images that differ
thresh = cv2.threshold(diff, 0, 255,
 cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
 cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if imutils.is_cv2() else cnts[1]

# loop over the contours
for c in cnts:
 # compute the bounding box of the contour and then draw the
 # bounding box on both input images to represent where the two
 # images differ
 (x, y, w, h) = cv2.boundingRect(c)
 cv2.rectangle(imageA, (x, y), (x + w, y + h), (0, 0, 255), 2)
 cv2.rectangle(imageB, (x, y), (x + w, y + h), (0, 0, 255), 2)

# show the output images
cv2.imshow("Original", imageA)
cv2.imshow("Modified", imageB)
cv2.imshow("Diff", diff)
cv2.imshow("Thresh", thresh)
cv2.waitKey(0)

使用方法

python image_diff.py –first original.png –second images/modified.png 

如果不想使用参数将参数代码部分直接变成

imageA = cv2.imread(“E:\1.png”) 
imageB = cv2.imread(“E:\2.png”)

以上这篇利用OpenCV和Python实现查找图片差异就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python之eval()函数危险性浅析

一般来说Python的eval()函数可以把字符串“123”变成数字类型的123,但是PP3E上说它很危险,还可以执行其他命令! 对此进行一些试验。果然,如果python写的cgi程序中...

python的range和linspace使用详解

在python中要产生一个数字序列,最快的方法就是使用range和linspace函数,但是这两者不太一样,但总的来说实现的效果是一致的,都能获取一个数字序列。 range range一...

介绍Python中的文档测试模块

如果你经常阅读Python的官方文档,可以看到很多文档都有示例代码。比如re模块就带了很多示例代码: >>> import re >>> m =...

对python函数签名的方法详解

函数签名对象,表示调用函数的方式,即定义了函数的输入和输出。 在Python中,可以使用标准库inspect的一些方法或类,来操作或创建函数签名。 获取函数签名及参数 使用标准库的sig...

NumPy中的维度Axis详解

NumPy中的维度Axis详解

浅谈NumPy中的维度Axis NumPy中的维度是一个很重要的概念,很多函数的参数都需要给定维度Axis,如何直观的理解维度呢?我们首先以二维数组为例进行说明,然后推广到多维数组。 (...