python+opencv实现车牌定位功能(实例代码)

yipeiwu_com6年前Python基础

写在前面

HIT大三上学期视听觉信号处理课程中视觉部分的实验三,经过和学长们实验的对比发现每一级实验要求都不一样,因此这里标明了是2019年秋季学期的视觉实验三。

由于时间紧张,代码没有进行任何优化,实验算法仅供参考。

实验要求

对给定的车牌进行车牌识别

实验代码

代码首先贴在这里,仅供参考

源代码

实验代码如下:

import cv2
import numpy as np
def lpr(filename):
  img = cv2.imread(filename)
  # 预处理,包括灰度处理,高斯滤波平滑处理,Sobel提取边界,图像二值化
  # 对于高斯滤波函数的参数设置,第四个参数设为零,表示不计算y方向的梯度,原因是车牌上的数字在竖方向较长,重点在于得到竖方向的边界
  # 对于二值化函数的参数设置,第二个参数设为127,是二值化的阈值,是一个经验值
  gray_img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
  GaussianBlur_img = cv2.GaussianBlur(gray_img, (3, 3), 0)
  Sobel_img = cv2.Sobel(GaussianBlur_img, -1, 1, 0, ksize=3)
  ret, binary_img = cv2.threshold(Sobel_img, 127, 255, cv2.THRESH_BINARY)
  # 形态学运算
  kernel = np.ones((5, 15), np.uint8)
  # 先闭运算将车牌数字部分连接,再开运算将不是块状的或是较小的部分去掉
  close_img = cv2.morphologyEx(binary_img, cv2.MORPH_CLOSE, kernel)
  open_img = cv2.morphologyEx(close_img, cv2.MORPH_OPEN, kernel)
  # kernel2 = np.ones((10, 10), np.uint8)
  # open_img2 = cv2.morphologyEx(open_img, cv2.MORPH_OPEN, kernel2)
  # 由于部分图像得到的轮廓边缘不整齐,因此再进行一次膨胀操作
  element = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
  dilation_img = cv2.dilate(open_img, element, iterations=3)
  # 获取轮廓
  contours, hierarchy = cv2.findContours(dilation_img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
  # 测试边框识别结果
  # cv2.drawContours(img, contours, -1, (0, 0, 255), 3)
  # cv2.imshow("lpr", img)
  # cv2.waitKey(0)
  # 将轮廓规整为长方形
  rectangles = []
  for c in contours:
    x = []
    y = []
    for point in c:
      y.append(point[0][0])
      x.append(point[0][1])
    r = [min(y), min(x), max(y), max(x)]
    rectangles.append(r)
  # 用颜色识别出车牌区域
  # 需要注意的是这里设置颜色识别下限low时,可根据识别结果自行调整
  dist_r = []
  max_mean = 0
  for r in rectangles:
    block = img[r[1]:r[3], r[0]:r[2]]
    hsv = cv2.cvtColor(block, cv2.COLOR_BGR2HSV)
    low = np.array([100, 60, 60])
    up = np.array([140, 255, 255])
    result = cv2.inRange(hsv, low, up)
    # 用计算均值的方式找蓝色最多的区块
    mean = cv2.mean(result)
    if mean[0] > max_mean:
      max_mean = mean[0]
      dist_r = r
  # 画出识别结果,由于之前多做了一次膨胀操作,导致矩形框稍大了一些,因此这里对于框架+3-3可以使框架更贴合车牌
  cv2.rectangle(img, (dist_r[0]+3, dist_r[1]), (dist_r[2]-3, dist_r[3]), (0, 255, 0), 2)
  cv2.imshow("lpr", img)
  cv2.waitKey(0)
# 主程序
for i in range(5):
  lpr(str(i+1) + ".jpg")

参数调整

上述代码中,所有涉及到参数调整的函数,例如形态学操作,都需边调整边观察当前参数下的运行结果,待本步运行结果较好时,再继续写下一步。

该代码对具体图片要求较高,不同的图片可能无法成功识别车牌,此时可尝试依次调整预处理部分,形态学部分,hsv检测部分函数的参数

实验结果

ps:图五是最难识别的图片,最后是通过调整hsv下限为[100, 60, 60]实现的

总结

以上所述是小编给大家介绍的python+opencv实现车牌定位功能,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对【听图阁-专注于Python设计】网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

相关文章

快速了解Python相对导入

1、绝对导入和相对导入 绝对导入:按照sys.path顺序搜索,先主目录(sys.path中第一项''),然后PYTHONPATH环境变量、标准库路径、pth指定路径等。 相对导入:...

Python笔记(叁)继续学习

主题: 为什么要有方法呢? 回答居然是:懒惰是一种美德 方法的定义关键词:   def 用callable来判断是否是可调用: 复制代码 代码如下: x = 1 y = math.sqr...

在Linux命令行终端中使用python的简单方法(推荐)

在Linux命令行终端中使用python的简单方法(推荐)

Linux终端中的操作均是使用命令行来进行的。因此,对于小白来说,熟记几个基本的命令行和使用方法能够较快的在Linux命令行环境中将python用起来。 打开命令行窗口 打开命令行窗口的...

Python中使用copy模块实现列表(list)拷贝

引用是指保存的值为对象的地址。在 Python 语言中,一个变量保存的值除了基本类型保存的是值外,其它都是引用,因此对于它们的使用就需要小心一些。下面举个例子: 问题描述:已知一个列表,...

对python append 与浅拷贝的实例讲解

在做Leetcode的第39题的时候,看到网上一个用递归的解法,很简洁。于是重写了一遍。 class Solution(object): def combinationSum(se...